Skip to main content
Log in

Polyaniline Based Voltammetric and Potentiometric Sensors with Electrochemically-Influenced Ion-Discriminating Positions for Determination of Mercury(II)

  • Scientific Research Paper
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

An electroanalytical method for measuring mercury(II) has been proposed. A sulfosalicylate-doped-polyaniline (PA/SA) membrane, which was incorporated with mercury(II) ions, would be fine-tuned toward this ion's characters. Consecutive transfer of mercury(II) ions into/from the mass of PA/SA film correspondingly varies the characters of its ion-recognition sites, i.e., ion-discrimination positions in the membrane are matched with the complexing capability, size, and hard-soft nature of this ion. Really, the membrane is patterned with mercury(II) ion, and adequate analyte-receptor positions are created in the PA/SA membrane. This technique results in an exceedingly selective electrode for voltammetrically and potentiometrically measurements of mercury(II) ion. The best circumstances for sensor action were found out using a half fraction central composite design. The surface properties and composition of the as-prepared, patterned, and patterned-accumulated PA/SA membranes have been analyzed by SEM–EDS. The interference impression on the sensor signal by coexisted ions was investigated, and it was comprehended that only silver shows a significant interference. The sensor determines mercury(II) by accumulation/differential pulse anodic stripping voltammetry in the interval of 1.0 × 10–9–1.0 × 10–4 M and potentiometrically in the molarities of 1.0 × 10–8–1.0 × 10–3 with suitable selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghani S, Sharif R, Bashir S, Ashraf A, Shahzadi S, Zaidi AA, Rafique S, Zafar N, Kamboh AH (2015) Dye-sensitized solar cells with high-performance electrodeposited gold/polyaniline composite counter electrodes. Mater Sci Semicond Process 31:588–592

    Article  Google Scholar 

  2. Saranya K, Rameez Md, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells: an overview. Eur Polym J 66:207–227

    Article  Google Scholar 

  3. Cui H-F, Du L, Guo P-B, Zhu B, Luong JHT (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53

    Article  Google Scholar 

  4. Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70

    Article  Google Scholar 

  5. Xavier Perrin F, Anh Phan T, Lam Nguyen D (2015) Preparation and characterization of polyaniline in reversed micelles of decylphosphonic acid for active corrosion protection coatings. Eur Polym J 66:253–265

    Article  Google Scholar 

  6. Ren B, Li Y, Meng D, Li J, Gao S, Cao R (2020) Encapsulating polyaniline within porous MIL-101 for high-performance corrosion protection. J Colloid Interface Sci 579:842–852

    Article  ADS  Google Scholar 

  7. ] Javed MS, Khan AJ, Hanif M, Nazir MT, Hussain S, Saleem M, Raza R, Yun S, Liu Z (2020) Engineering the performance of negative electrode for supercapacitor by polyaniline coated Fe3O4 nanoparticles enables high stability up to 25,000 cycles. Int J Hydrog Energy. In Press. https://doi.org/10.1016/j.ijhydene.2020.04.173

  8. Janošević A, Ćirić-Marjanović G, Marjanović B, Holler P, Trchová M, Stejskal J (2008) Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. Nanotechnology 19:135606. https://doi.org/10.1088/0957-4484/19/13/135606

    Article  ADS  Google Scholar 

  9. Ding L, Su B (2015) A non-enzymatic hydrogen peroxide sensor based on platinum nanoparticle–polyaniline nanocomposites hosted in mesoporous silica film. J Electroanal Chem 736:83–87

    Article  Google Scholar 

  10. Pakapongpan S, Mensing JP, Phokharatkul D, Lomas T, Tuantranont A (2014) Highly selective electrochemical sensor for ascorbic acid based on anovel hybrid graphene-copper phthalocyanine–polyaniline nanocomposites. Electrochim Acta 133:294–301

    Article  Google Scholar 

  11. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  Google Scholar 

  12. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  Google Scholar 

  13. Cui H, Li Q, Qian Y, Tang R, An H, Zhai J (2011) Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor. Water Res 45:5736–5744

    Article  Google Scholar 

  14. Gao M, Yang Y, Diao M, Wang S-g, Wang X-h, Zhang G, Zhang G (2011) Exceptional ion-exchange selectivity for perchlorate based on polyaniline films. Electrochim Acta 56:7644–7650

    Article  Google Scholar 

  15. Andreev VN, Ovsyannikova EV, Alpatova NM (2010) Immobilization of phthalocyanines in conducting polymers. Polyaniline–copper tetrasulfophthalocyanine. Russ J Electrochem 46:1056–1062

    Article  Google Scholar 

  16. Damos FS, Luz RCS, Tanaka AA, Kubota LT (2006) Investigations of nanometric films of doped polyaniline by using electrochemical surface plasmon resonance and electrochemical quartz crystal microbalance. J Electroanal Chem 589:70–81

    Article  Google Scholar 

  17. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    Article  Google Scholar 

  18. Martín-Yerga D, González-García MB, Costa-García A (2013) Electrochemical determination of mercury: a review. Talanta 116:1091–1104

    Article  Google Scholar 

  19. Khan AA, Paquiza L (2011) Analysis of mercury ions in effluents using potentiometric sensor based on nanocomposite cation exchanger Polyaniline–zirconium titanium phosphate. Desalination 272:278–285

    Article  Google Scholar 

  20. Han W-S, Wi K-C, Park W-S, Hong T-K (2012) Mercury ion selective poly(aniline) solid contact electrode based on 2-Mercaptobenzimidazol ionophore. Russ J Electrochem 48:525–531

    Article  Google Scholar 

  21. Somerset V, Leaner J, Mason R, Iwuoha E, Morrin A (2010) Determination of inorganic mercury using a polyaniline and polyaniline-methylene blue coated screen-printed carbon electrode. Int J Environ Anal Chem 90:671–685

    Article  Google Scholar 

  22. Somerset V, Leaner J, Mason R, Iwuoha E, Morrin A (2010) Development and application of a poly(2,2’-dithiodianiline) (PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochim Acta 55:4240–4246

    Article  Google Scholar 

  23. Do J-S, Lin K-H, Ohara R (2011) Preparation of urease/nano-structured polyaniline-Nafion1/Au/Al2O3 electrode for inhibitive detection of mercury ion. J Taiwan Inst Chem Eng 42:662–668

    Article  Google Scholar 

  24. Singh PR, Contractor AQ (2005) Conductometric Hg sensor based on polyaniline as transducer. Int J Environ Anal Chem 85:831–835

    Article  Google Scholar 

  25. Muthukumar C, Kesarkar SD, Srivastava DN (2007) Conductometric mercury[II] sensor based on polyaniline–cryptand-222 hybrid. J Electroanal Chem 602:172–180

    Article  Google Scholar 

  26. Evtugyn GA, Stoikov II, Beljyakova SV, Shamagsumova RV, Stoikova EE, Zhukov AYu, Antipin IS, Budnikov HC (2007) Ag selective electrode based on glassy carbon electrode covered with polyaniline and thiacalix[4]arene as neutral carrier. Talanta 71:1720–1727

    Article  Google Scholar 

  27. Basozabal I, Gómez-Caballero A, Unceta N, Goicolea MA, Barrio RJ (2011) Voltammetric sensors with chiral recognition capability: the use of a chiral inducing agent in polyaniline electrochemical synthesis for the specific recognition of the enantiomers of the pesticide dinoseb. Electrochim Acta 58:729–735

    Article  Google Scholar 

  28. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S (2000) Potentimetric selsctivity coefficients of ion-selective electrodes. Part I. Inorganic cations. Pure Appl Chem 72:1851–2082

    Article  Google Scholar 

  29. Buck RP, Lindner E (1994) Recomendations for nomenclature of ion-selective electrodes. Pure Appl Chem 66:2527–2536

    Article  Google Scholar 

  30. Farrell ST, Breslin CB (2004) Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta 49:4497–4503

    Article  Google Scholar 

  31. Trivedi DC, Dhawan SK (1993) Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline. Synth Met 58:309–324

    Article  Google Scholar 

  32. Sapurina IYu, Stejskal J (2010) The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ Chem Rev 79:1123–1143

    Article  ADS  Google Scholar 

  33. Prigodin VN, Epstein AJ (2002) Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. Synth Met 125:43–53

    Article  Google Scholar 

  34. Tsakova V, Milchew A (1991) Nucleation of silver on a polyaniline-coated platinum electrode. Electrochim Acta 36:1151–1155

    Article  Google Scholar 

  35. Tsakova V (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. J Solid State Electrochem 12:1421–1434

    Article  Google Scholar 

  36. Tsakova V, Borissov D, Ranguelov B, Stromberg Ch, Schultze JW (2001) Electrochemical incorporation of copper in polyaniline layers. Electrochim Acta 46:4213–4222

    Article  Google Scholar 

  37. Marjanović B, Juranić I, Mentus S, Ćirić-Marjanović G, Holler P (2010) Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water. Chem Pap 64:783–790

    Article  Google Scholar 

  38. Massoumi B, Entezami A (2001) Controlled release of sulfosalicylic acid during electrochemical switching of conducting polymer bilayers. Eur Poly J 37:1015–1020

    Article  Google Scholar 

  39. Tawde S, Mukesh D, Yakhmi JV (2002) Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling. Synth Met 125:401–413

    Article  Google Scholar 

  40. Ugo P, Sperni L, Moretto LM (1997) Ion-exchange voltammetry of trace mercury(II) at glassy carbon electrodes coated with a cationic polypyrrole derivative. Application to pore-waters analysis. Electroanalysis 9:1153–1158

    Article  Google Scholar 

  41. Huguenin F, Ferreira M, Zucolotto V, Nart FC, Torresi RM, Oliveira ON Jr (2004) Molecular-level manipulation of V2O5/polyaniline layer-by-layer films to control electrochromogenic and electrochemical properties. Chem Mater 16:2293–2299

    Article  Google Scholar 

  42. Wang B, Wasielewski MR (1997) Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials. J Am Chem Soc 119:12–21

    Article  Google Scholar 

  43. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York, p 1.377

  44. Cordova R, de Valle MA, Arratia A, Gomez Schrebler HR (1994) Effect of anions on the nucleation and growth mechanism of polyaniline. J Electroanal Chem 377:75–83

    Article  Google Scholar 

  45. Mandić Z, Duić L, Kovačiček F (1997) The influence of counter-ions on nucleation and growth of electrochemically synthesized polyaniline film. Electrochim Acta 42:1389–1402

    Article  Google Scholar 

  46. Bade K, Tsakova V, Schultze JW (1992) Nucleation, growth and branching of polyaniline from microelectrode experiments. Electrochim Acta 37:2255–2261

    Article  Google Scholar 

  47. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484

    Article  Google Scholar 

  48. Philips MF, Gopalan AI, Lee K-P (2012) Development of a novel cyano group containing electrochemically deposited polymer film for ultrasensitive simultaneous detection of trace level cadmium and lead. J Hazard Mater 237–238:46–54

    Article  Google Scholar 

  49. LjD A, Plieth W, Koßmehl G (1998) Electrochemical and Raman spectroscopic study of polyaniline; influence of the potential on the degradation of polyaniline. J Solid State Electrochem 2:355–361

    Article  Google Scholar 

  50. Lu Q-F, Huang M-R, Li X-G (2007) Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability. Chem Eur J 13:6009–6018

    Article  Google Scholar 

  51. Li X-G, Feng H, Huang M-R (2010) Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chem Eur J 16:10113–10123

    Article  Google Scholar 

  52. Li Q, Sun L, Zhang Y, Qian Y, Zhai J (2011) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II) and Cr(VI) by polyaniline/humic acid composite. Desalination 266:188–194

    Article  Google Scholar 

  53. Zhang Y, Yin J, Wang K, Chen P, Ji L (2013) Electrocatalysis and detection of nitrite on a polyaniline-Cu nanocomposite-modified glassy carbon electrode. J Appl Polym Sci 128:2971–2976

    Article  Google Scholar 

  54. Li R, Liu L, Yang F (2014) Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane. J Hazard Mater 280:20–30

    Article  Google Scholar 

  55. Zhang Y, Li Q, Sun L, Tang R, Zhai J (2010) High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite. J Hazard Mater 175:404–409

    Article  Google Scholar 

  56. Liu Q, Wang F, Qiao Y, Zhang S, Ye B (2010) Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions. Electrochim Acta 55:1795–1800

    Article  Google Scholar 

  57. Song F-Y, Shiu K-K (2001) Preconcentration and electroanalysis of silver species at polypyrrole film modified glassy carbon electrodes. J Electroanal Chem 498:161–170

    Article  Google Scholar 

  58. Stoikova EE, Sorvin MI, Shurpik DN, Budnikov HC, Stoikov II, Evtugyn GA (2015) Solid-contact potentiometric sensor based on polyaniline and unsubstituted pillar[5]arene. Electroanalysis 27:440–449

    Article  Google Scholar 

  59. Khan AA, Paquiza L (2011) Characterization and ion-exchange behavior of thermally stable nano-composite polyaniline zirconium titanium phosphate: Its analytical application in separation of toxic metals. Desalination 265:242–254

    Article  Google Scholar 

  60. Aglan RF, Saleh HM, Mohamed GG (2018) Potentiometric determination of mercury(II) ion in various real samples using novel modified screen-printed electrode. Appl Water Sci 8:141

    Article  ADS  Google Scholar 

  61. Etorki AM, Kammashi MA, Elhabbat MS, Shaban IS (2017) Application of polyaniline nanoparticles modified screen printed carbon electrode as a sensor for determination of Hg(II) in environmental samples. J Environ Anal Toxicol 7:1000471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zanganeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, R., Zanganeh, A.R. Polyaniline Based Voltammetric and Potentiometric Sensors with Electrochemically-Influenced Ion-Discriminating Positions for Determination of Mercury(II). Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 93, 7–21 (2023). https://doi.org/10.1007/s40010-022-00789-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-022-00789-6

Keywords

Navigation