Skip to main content
Log in

Abstract

In the last few decades there has been a remarkable growth in the development of optical spectroscopic techniques for in situ, sensitive, minimally invasive diagnosis. In this article we provide an overview of the field and highlight some representative applications. Special emphasis has been placed on the use of optical spectroscopic techniques for non-invasive diagnosis of cancer where a significant amount of work has been carried out in the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Reproduced with permission from [13])

Fig. 4

(Adapted from Ref [36])

Fig. 5

Similar content being viewed by others

References

  1. Keiser G (2016) Biophotonics: concepts to applications. Springer, Singapore

    Book  Google Scholar 

  2. Soares JS, Barman I, Dingari NC et al (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with micro-calcifications. Proc Natl Acad Sci USA 110:471–476

    Article  ADS  Google Scholar 

  3. Kong K, Stone N, Kendall C, Notingher I (2015) Raman spectroscopy for medical diagnostics: from in vitro biofluid assays to in vivo cancer detection. Adv Drug Deliv Rev 89:121–134

    Article  Google Scholar 

  4. Šćepanović OR, Volynskaya Z, Kong CR et al (2009) A multimodal spectroscopy system for real-time disease diagnosis. Rev Sci Instrum 80:043103

    Article  ADS  Google Scholar 

  5. Schwaighofer A, Brandstetter M, Lendl B (2017) Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 46:5903–5924

    Article  Google Scholar 

  6. Ghosh C, Banik G, Maity A et al (2015) Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes. Sci Rep 5:813

    Google Scholar 

  7. Stratonnikov AA, Loschenov VB (2001) Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J Biomed Opt 6:457–467

    Article  Google Scholar 

  8. Perelman LT, Backman V, Wallace M et al (1998) Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys Rev Lett 80:627–630

    Article  ADS  Google Scholar 

  9. Tuchin VV (2016) Polarized light interaction with tissues. J Biomed Opt 21:071114

    Article  Google Scholar 

  10. Manhas S, SwamiMK Buddhiwant P, Ghosh N, Gupta PK, Singh K (2006) Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt Exp 14:190–202

    Article  ADS  Google Scholar 

  11. Manhas S, Swami M, Patel HS, Uppal A, Ghosh N, Gupta PK (2009) Polarized diffuse reflectance measurements on cancerous and noncancerous tissues. J Biophoton 2:581–587

    Article  Google Scholar 

  12. Swami MK, Patel HS, Somyaji MR, Kushwaha PK, Gupta PK (2014) Size-dependent patterns in depolarization maps from turbid medium and tissue. Appl Opt 53:6133–6139

    Article  ADS  Google Scholar 

  13. Sharma P, Sahu K, Kushwaha PK, Kumar S, Swami MK, Kumawat J, Patel HS, Kher S, Sahani PK, Haridas G, Gupta PK (2017) Noninvasive assessment of cutaneous alterations in mice exposed to whole body gamma irradiation using optical imaging techniques. Las Med Sci 32:1535–1544

    Article  Google Scholar 

  14. Zonios G, Perelman LT, Backman V et al (1999) Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl Opt 38:6628–6637

    Article  ADS  Google Scholar 

  15. Evers DJ, Nachabe R, Peeters MJV et al (2013) Diffuse reflectance spectroscopy: towards clinical application in breast cancer. Breast Cancer Res Treat 137:155–165

    Article  Google Scholar 

  16. Einstein G, Udayakumara K, Aruna PR, Koteeswaran D, Ganesan S (2016) Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik 127:1479–1485

    Article  ADS  Google Scholar 

  17. Marín NM, Milbourne A, Rhodes H et al (2005) Diffuse reflectance patterns in cervical spectroscopy. Gynecol Oncol 99:S116–S120

    Article  Google Scholar 

  18. Subhash N, Malllia JR, Shiny ST et al (2006) Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J Biomed Opt 11:014018

    Article  Google Scholar 

  19. Mallia RJ, Shiny ST, Anitha M et al (2008) Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral precancer. J Biomed Opt 13:041306

    Article  Google Scholar 

  20. Jayanthi JL, Nisha U, Manju S et al (2011) Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity. BMJ Open 1:e000071

    Article  Google Scholar 

  21. Prabitha VG, Suchetha S, Jayanthi JL et al (2016) Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study. Lasers Med Sci 31:67–75

    Article  Google Scholar 

  22. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935

    Article  Google Scholar 

  23. Godavarty A, Rodriguez S, Jung Y, Gonzalez S (2015) Optical imaging for breast cancer prescreening. Breast Cancer 7:193–209

    Google Scholar 

  24. Yalavarthy PK, Karlekar K, Patel HS et al (2005) Experimental investigation of perturbation Monte-Carlo based derivative estimation for imaging low-scattering tissue. Opt Exp 13:985–988

    Article  ADS  Google Scholar 

  25. Biswas SK, Rajan K, Vasu RM, Roy D (2011) Ultrasound modulated optical tomography: Young’s modulus of the insonified region from measurement of natural frequency of vibration. Opt Exp 19:22837–22850

    Article  ADS  Google Scholar 

  26. Kortum RR, Muraca ES (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606

    Article  ADS  Google Scholar 

  27. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2:89–117

    Article  Google Scholar 

  28. Evers DJ, Hendriks BHW, Lucassen GW, Ruers TJM (2012) Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Future Oncol 8:307–320

    Article  Google Scholar 

  29. de Boer LL, JW Spliethoff, Sterenborg HJCM, Ruers TJM (2017) Review: in vivo optical spectral tissue sensing—how to go from research to routine clinical application? Lasers Med Sci 32:711–719

    Article  Google Scholar 

  30. Gupta PK, Majumder SK, Dasgupta R, Sharma P (2012) Biophotonics: studies at RRCAT. KIRAN Bull Indian Laser Assoc 23:51–59

    Google Scholar 

  31. Gupta PK, Majumder SK, Uppal A (1997) Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy. Laser Surg Med 21:417–422

    Article  Google Scholar 

  32. Majumder SK, Gupta PK, Uppal A (1999) Autofluorescence spectroscopy of tissues from human oral cavity for discriminating malignant from normal. Laser Life Sci 8:211–227

    Google Scholar 

  33. Uppal A, Gupta PK (2003) Measurement of NADH concentration in normal and malignant human tissues from breast and oral cavity. Biotechnol Appl Biochem 37:45–50

    Article  Google Scholar 

  34. Mohanty SK, Ghosh N, Majumder SK, Gupta PK (2001) Depolarization of autofluorescence from malignant and normal human breast tissues. Appl Opt 40:1147–1154

    Article  ADS  Google Scholar 

  35. Ghosh N, Majumder SK, Patel HS, Gupta PK (2005) Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy. Opt Lett 30:162–165

    Article  ADS  Google Scholar 

  36. Gupta PK, Patel HS, Ahlawat S (2015) Light based techniques for improving health care: studies at RRCAT. Proc Natl Acad Sci India Sect A Phys Sci 85:489–499

    Article  Google Scholar 

  37. Chowdary MV, Mahato KK, Kumar KK et al (2009) Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions. J Photomed Laser Surg 27:241–252

    Article  Google Scholar 

  38. Kartha VB, Santosh C (2014) Biomedical spectroscopy. Manipal University Press, Manipal

    Google Scholar 

  39. Jagtap J, Patil N, Parchur AK et al (2017) Effective screening and classification of cervical precancer biopsy imagery. IEEE Trans Nanobiosci 16:687–693

    Article  Google Scholar 

  40. Meena BL, Singh P, Sah AN et al (2018) Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device. J Biomed Opt 23:015005

    Article  Google Scholar 

  41. Biswal NC, Gupta S, Ghosh N, Pradhan A (2003) Recovery of turbidity free fluorescence from measured fluorescence an experimental approach. Opt Exp 11:3320–3331

    Article  ADS  Google Scholar 

  42. Rath D, Lodhi MEA, Shukla P et al (2008) A comparative study of intrinsic versus bulk polarized fluorescence in cervical tissues. Biomed Opt Spectrosc 6853:685319

    Article  Google Scholar 

  43. Nazeer SS, Saraswathy A, Gupta AK, Jayasree RS (2014) Fluorescence spectroscopy to discriminate neoplastic human brain lesions: a study using the spectral intensity ratio and multivariate linear discriminant analysis. Laser Phys 24:025602

    Article  ADS  Google Scholar 

  44. Nazeer SS, Asish R, Venugopal C, Anita B, Gupta AK, Jayasree RS (2014) Noninvasive assessment of the risk of tobacco abuse in oral mucosa using fluorescence spectroscopy: a clinical approach. J Biomed Opt 19:057013–057013

    Article  Google Scholar 

  45. Jayanthi JL, Narayanan S, Manju S, Philip EK, Beena VT (2011) Diagnostic evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study. J Biophoton 4:696–706

    Article  Google Scholar 

  46. Mallia R, Subhash N, Madhavan J, Sebastian P, Kumar R, Mathews A, Thomas G, Radhakrishnan J (2010) Diffuse reflectance spectroscopy: an adjunct to autofluorescence spectroscopy in tongue cancer detection. Appl Spectrosc 64:409–418

    Article  ADS  Google Scholar 

  47. Mallia R, Subhash N, Mathews A, Kumar R, Thomas S, Sebastian P, Madhavan J (2010) Clinical grading of oral mucosa by curve-fitting of corrected autofluorescence using diffuse reflectance spectra. Head Neck 32:763–779

    Google Scholar 

  48. Quang T, Tran EQ, Schwarz RA, Williams MD, Vigneswaran N, Gillenwater AM, Kortum RR (2017) Prospective evaluation of multi-modal optical imaging with automated image analysis to detect oral neoplasia in vivo. Cancer Prev Res 10:563–570

    Article  Google Scholar 

  49. Kong K, Kendall C, Stone N, Notingher I (2015) Ramanspectroscopy for medical diagnostics: from in vitro biofluid assays to in vivo cancer detection. Adv Drug Deliv Rev 89:121–134

    Article  Google Scholar 

  50. Liu CH, Das BB, Glassman WLS, Tang GC, Yoo KM, Zhu HR, Akins DL, Lubicz SS, Cleary J, Prudente R, Celmer E, Caron A, Alfano RR (1992) Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. J Photochem Photobiol B 16:187–209

    Article  Google Scholar 

  51. Venkatakrishna K, Kurien J, Pai K, Valiathan M, Kumar N, Krishna CM, Ullas G, Kartha VB (2001) Optical pathology of oral tissue: a raman spectroscopy diagnostic method. Curr Sci 80:665–669

    Google Scholar 

  52. Khan KM, Majumder SK, Gupta PK (2015) Cone–shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue. J Biophoton 8:889–896

    Article  Google Scholar 

  53. Krishna H, Majumder SK, Chaturvedi P, Sidramesh M, Gupta PK (2014) In vivo Raman spectroscopy for detection of oral neoplasia: a pilot clinical study. J Biophoton 7:690–702

    Article  Google Scholar 

  54. Krishna CM, Kurien J, Mathew S et al (2008) Raman spectroscopy of breast tissues. Exp Rev Mol Diagn 8:149–166

    Article  Google Scholar 

  55. Rubina S, Krishna CM (2015) Raman spectroscopy in cervical cancers: an update. J Cancer Res Ther 11:10–17

    Article  Google Scholar 

  56. Krishna H, Majumder SK, Chaturvedi P, Gupta PK (2013) Anatomical variablility of in vivo Raman spectra of normal oral cavity and its effect on oral tissue classification. Biomed Spectrosc Imaging 2:199–217

    Google Scholar 

  57. Sahu A, Krishna CM (2017) Optical diagnostics in oral cancer: an update on Raman spectroscopic applications. J Cancer Res Ther 13:908–915

    Google Scholar 

  58. Krishna CM (2016) Raman therenostics in cancers: challenge and perspectives. Kiran Bull Indian Laser Assoc 27:5–13

    Google Scholar 

  59. Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM (2013) In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst 138:4175

    Article  ADS  Google Scholar 

  60. Sahu A, Dhoot S, Singh A, Sawant SS, Nandakumar N, Talathi-Desai S, Garud M, Pagare S, Srivastava S, Nair S et al (2015) Oral cancer screening: serum Raman spectroscopic approach. J Biomed Opt 20:115006

    Article  Google Scholar 

  61. Banik GD, Som S, Maity A, Pal M, Maithani S, Mandal S, Pradhan M (2017) An EC-QCL based N2O sensor at 5.2 μm using cavity ring-down spectroscopy for environmental applications. Anal Methods 9:2315

    Article  Google Scholar 

  62. Dey A, Banik G, Maity A, Pal M, Pradhan M (2016) Continuous wave external-cavity quantum cascade laser-based high-resolution cavity ring-down spectrometer for ultrasensitive trace gas detection. Opt Lett 41:1949–1953

    Article  ADS  Google Scholar 

  63. Maity A, Pal M, Som S, Maithani S, Chaudhuri S, Pradhan M (2017) Natural 18O and 13C-urea in gastric juice: a new route for non-invasive detection of ulcers. Anal Bioanal Chem 409:193–200

    Article  Google Scholar 

  64. Ghosh C, Banik G, Maity A, Som S, Chakraborty A, Selvan C, Ghosh S, Chowdhury S, Pradhan M (2015) Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2. Sci Rep 5:8137

    Article  ADS  Google Scholar 

  65. Ghosh C, Mukhopadhyay P, Ghosh S, Pradhan M (2015) Insulin sensitivity index (ISI0, 120) potentially linked to carbon isotopes of breath CO2 for pre-diabetes and type 2 diabetes. Sci Rep 5:11959

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Santhosh Chidangil (Manipal Academy of Higher Education, Manipal), Dr. R S Jayasree (Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum), Dr. C M Krishna (Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Mumbai), Prof. A. Pradhan (Indian Institute of Technology, Kanpur), Dr. N. Subhash (Sascan Meditech Pvt Ltd, Bangalore)), Prof. M. Pradhan (SN Bose National Centre for Basic Sciences, Kolkata), for providing inputs on their work. Authors would also like to thank Sh. H. S. Patel (Raja Ramanna Centre for Advanced Technology, Indore) for his inputs and for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swami, M.K., Gupta, P.K. Optical Spectroscopy for Biomedical Diagnosis. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 88, 453–460 (2018). https://doi.org/10.1007/s40010-018-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0519-1

Keywords

Navigation