Skip to main content
Log in

Jain–Durrmeyer Operators Involving Inverse Pólya–Eggenberger Distribution

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Stancu generalized Baskakov operators using inverse Pólya–Eggenberger distribution for a real valued bounded function on \([0,\infty )\) and a non-negative real number \(\alpha \) (which may depend on n). Dhamija and Deo (Appl Math Comput 286:15–22, 2016) introduced a Durrmeyer type modification of these generalized operators and studied the uniform convergence, the rate of convergence by means of the moduli of continuity and the Peetre’s K-functional. The purpose of the present paper is to continue to study the approximation properties of these Durrmeyer type operators. Local and global direct approximation theorems and a Voronovskaya type asymptotic theorem are established. The quantitative Voronovskaya and Grüss Voronovskaya type theorems are investigated by calculating the indispensible sixth order moment. The weighted approximation properties and the approximation of functions with derivatives of bounded variation are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stancu DD (1968) Approximation of functions by a new class of linear polynomial operators. Rev Roum Math Pures Appl 13:1173–1194

    MathSciNet  MATH  Google Scholar 

  2. Lupas L, Lupas A (1987) Polynomials of binomial type and approximation operators. Studia Univ Babes-Bolyai Math 32(4):61–69 (Romanian summary)

    MathSciNet  MATH  Google Scholar 

  3. Stancu DD (1985) On the representation by divided differences of the remainder in Bernstein’s approximation formula. Seminar of numerical and statistical calculus (Cluj-Napoca, 1984–1985), pp 103–110, Preprint, 85-4, Univ “Babes-Bolyai”, Cluj-Napoca

  4. Johnson NL, Kotz S (1969) Distributions in statistics: discrete distributions. Houghton Mifflin Co, Boston Mass xvi+328 pp

    MATH  Google Scholar 

  5. Stancu DD (1970) Two classes of positive linear operators. Anal Univ Timişoara, Şer Matem 8:213–220

    MathSciNet  MATH  Google Scholar 

  6. Baskakov VA (1957) An instance of a sequence of linear positive operators in the space of continuous functions. Dokl Akad Nauk SSSR (N S) 113:249–251 (Russian)

    MathSciNet  MATH  Google Scholar 

  7. Razi Q (1989) Approximation of a function by Kantorovich type operators. Mat Vesnik 41(3):183–192

    MathSciNet  MATH  Google Scholar 

  8. Deo N, Dhamija M, Miclăuş D (2016) Stancu-Kantorovich operators based on inverse Pólya–Eggenberger distribution. Appl Math Comput 273:281–289

    MathSciNet  MATH  Google Scholar 

  9. Jain GC (1972) Approximation of functions by a new class of linear operators. J Aust Math Soc 13(3):271–276

    Article  MathSciNet  MATH  Google Scholar 

  10. Szász O (1950) Generalization of S. Bernsteins polynomials to the infinite interval. J Res Nat Bur Stand 45:239–245

    Article  MathSciNet  Google Scholar 

  11. Durrmeyer J L (1967) Une formule d’inversion de la transform e de Laplace: applications   la th orie des moments. Th se de 3e cycle, Paris

  12. Derriennic MM (1981) Sur l’approximation de fonctions intgrables sur [0, 1] par des polynmes de Bernstein modifies. J Approx Theory 31:325–343

    Article  MathSciNet  MATH  Google Scholar 

  13. Aral A, Gupta V, Agarwal RP (2013) Applications of \(q\) calculus in operator theory. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Gonska H, Kacso D, Rasa I (2007) On genuine Bernstein–Durrmeyer operators. Results Math 50:213–225

    Article  MathSciNet  MATH  Google Scholar 

  15. Goyal M, Gupta V, Agrawal PN (2015) Quantitative convergence results for a family of hybrid operators. Appl Math Comput 271:893–904

    MathSciNet  MATH  Google Scholar 

  16. Gupta V, Agarwal RP (2014) Convergence estimates in approximation theory. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Gupta V, Greubel GC (2015) Moment estimations of new Szász-Mirakyan–Durrmeyer operators. Appl Math Comput 271:540–547

    MathSciNet  MATH  Google Scholar 

  18. Gupta V, Rassias TM (2015) Direct estimates for certain Szász type operators. Appl Math Comput 251:469–474

    MathSciNet  MATH  Google Scholar 

  19. Kajla A, Agrawal PN (2015) Szász–Durrmeyer type operators based on Charlier polynomials. Appl Math Comput 268:1001–1014

    MathSciNet  MATH  Google Scholar 

  20. Dhamija M, Deo N (2016) Jain–Durrmeyer operators associated with the inverse Polya-Eggenberger distribution. Appl Math Comput 286:15–22

    MathSciNet  MATH  Google Scholar 

  21. Kajla A, Acu AM, Agrawal PN (2017) Baskakov–Szász-type operators based on inverse Pólya–Eggenberger distribution. Ann Funct Anal 8(1):106–123

    Article  MathSciNet  MATH  Google Scholar 

  22. Kajla A, Agrawal PN (2015) Approximation properties of Szász type operators based on Charlier polynomials. Turk J Math 39(6):990–1003

    Article  MATH  Google Scholar 

  23. Özarslan MA, Duman O (2010) Local approximation behavior of modified SMK operators. Miskolc Math Notes 11(1):87–99

    Article  MathSciNet  MATH  Google Scholar 

  24. Neer T, Agrawal PN, Araci S (2017) Stancu–Durrmeyer type operators based on \(q\)-integers. Appl Math Inf Sci 11(3):1–9

    Article  MathSciNet  Google Scholar 

  25. Lenze B (1988) On Lipschitz-type maximal functions and their smoothness spaces. Nederl Akad Wetensch Indag Math 50(1):53–63

    Article  MathSciNet  MATH  Google Scholar 

  26. Kajla A (2017) Direct estimates of certain Miheşan–Durrmeyer type operators. Adv Oper Theory 2(2):162–178

    MathSciNet  MATH  Google Scholar 

  27. Zhuk VV (1989) Functions of the Lip1 class and S. N. Bernstein’s polynomials. Vestnik Leningr Univ Mat Mekh Astronom 1:25–30 (in Russian)

    Google Scholar 

  28. Ditzian Z, Totik V (1987) Moduli of smoothness, vol 9. Springer series in computational mathematics. Springer, New York

    Book  MATH  Google Scholar 

  29. İspir N (2001) On modified Baskakov operators on weighted spaces. Turk J Math 25(3):355–365

    MathSciNet  MATH  Google Scholar 

  30. İspir N, Atakut Ç (2002) Approximation by modified Szász–Mirakjan operators on weighted spaces. Proc Indian Acad Sci (Math Sci) 112(4):571–578

    Article  MathSciNet  MATH  Google Scholar 

  31. Acar T (2016) Quantitative \(q\)-Voronovskaya and \(q\)-Grüss-Voronovskaya-type results for \(q\)-Szász operators. Georgian Math J 23(4):459–468

    Article  MathSciNet  MATH  Google Scholar 

  32. Acar T, Aral A, Rasa I (2016) The new forms of Voronovskaya’s theorem in weighted spaces. Positivity 20(1):25–40

    Article  MathSciNet  MATH  Google Scholar 

  33. Erençin A, Rasa I (2016) Voronovskaya type theorems in weighted spaces. Numer Funct Anal Optim 37(12):1517–1528

    Article  MathSciNet  MATH  Google Scholar 

  34. Gonska H, Tachev G (2011) Grüss-type inequalities for positive linear operators with second order moduli. Mat Vesnik 63(4):247–252

    MathSciNet  MATH  Google Scholar 

  35. Grüss G (1935) Über das Maximum des absoluten Betrages von \(\frac{1}{{b - a}}\int \limits _a^b f(x)g(x)dx - \frac{1}{(b-a)^2}\int \limits _a^b f(x) dx \int \limits _a^b g(x) dx\). (German) Math Z 39(1):215–226

    Article  MathSciNet  MATH  Google Scholar 

  36. Acu AM, Gonska H, Rasa I (2011) Grüss-type and Ostrowski-type inequalities in approximation theory. Ukr Math J 63(6):843–864

    Article  MATH  Google Scholar 

  37. Deniz E (2016) Quantitative estimates for Jain–Kantorovich operators. Commun Fac Sci Univ Ank Sér A1 Math Stat 65(2):121–132

    MathSciNet  MATH  Google Scholar 

  38. Gal SG, Gonska H (2015) Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J Approx 7(1):97–122

    MathSciNet  MATH  Google Scholar 

  39. Tariboon J, Ntouyas SK (2014) Quantum integral inequalities on finite intervals. J Inequal Appl 121:13

    MathSciNet  MATH  Google Scholar 

  40. Ibikli E, Gadjieva EA (1995) The order of approximation of some unbounded function by the sequences of positive linear operators. Turk J Math 19(3):331–337

    MathSciNet  MATH  Google Scholar 

  41. Gadjiev AD (1976) On P. P. Korovkin type theorems. Math Zametki 20(5):781–786

    Google Scholar 

Download references

Acknowledgements

The first author is thankful to the “Ministry of Human Resource Development, India” for financial support to carry out her research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarul Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, T., Agrawal, P.N. & Kajla, A. Jain–Durrmeyer Operators Involving Inverse Pólya–Eggenberger Distribution. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 547–557 (2019). https://doi.org/10.1007/s40010-018-0492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0492-8

Keywords

Mathematics Subject Classification

Navigation