Skip to main content
Log in

Heat Transfer Characteristics in Oscillatory Hydromagnetic Channel Flow of Maxwell Fluid Using Cattaneo–Christov Model

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The aim of this investigation is to discuss the hydromagnetic flow and heat transfer of Maxwell fluid in a channel with oscillatory stretching walls. Unlike typical heat transfer studies, here Cattaneo–Christov heat flux model is used. The transformed dimensionless nonlinear partial differential equations are solved by means of the homotopy analysis method. The convergent series solutions are utilized to discuss the main effects of emerging parameters on velocity and temperature. The obtained results illustrate that Hartmann and Deborah numbers suppress the velocity profiles. However, an increase in ratio of oscillation frequency to stretching rate increases the velocity profiles. A reverse flow occurs in the central region of the channel which is found to decrease by increasing Hartmann and Deborah numbers. Moreover, for the Cattaneo–Christove model fluid temperature inside the channel is less when compared with temperature obtained using heat flux based on Fourier law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Harris J (1977) Rheology and non-Newtonian flow. Longman Inc., New York

    MATH  Google Scholar 

  2. Zhao F, Wang Z, Feng Z, Liu H (2001) Stability analysis of Maxwell viscoelastic pipes conveying fluid with both ends simply supported. Appl Math Mech (English Edition) 22:1436–1445

    Article  MATH  Google Scholar 

  3. Salah F, Zainal Aziz ZA, Ching DLC (2011) New exact solution for Rayleigh–Stokes problem of Maxwell fluid in a porous medium and rotating frame. Results Phys 1:9–12

    Article  ADS  Google Scholar 

  4. Nazar M, Shahid F, Akram MS, Sultan Q (2012) Flow on oscillating rectangular duct for Maxwell fluid. Appl Math Mech (English Edition) 33(6):717–730

    Article  MathSciNet  MATH  Google Scholar 

  5. Hayat T, Zaib S, Asghar S, Bhattacharyya K, Shehzad SA (2013) Transient flows of Maxwell fluid with slip conditions. Appl Math Mech (English Edition) 34(2):153–166

    Article  MathSciNet  Google Scholar 

  6. Zheng L, Zhao F, Zhang X (2010) Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate, on linear. Anal Real World Appl 11(5):3744–3751

    Article  MathSciNet  MATH  Google Scholar 

  7. Nazar M, Zulqarnain M, Akram MS, Asif M (2012) Flow through an oscillating rectangular duct for generalized Maxwell fluid with fractional derivatives. Commun Nonlinear Sci Numer Simul 17(8):3219–3234

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Qi HT, Liu JG (2011) Some duct flows of a fractional Maxwell fluid. Eur Phys J Spec Top 193(1):71–79

    Article  Google Scholar 

  9. Chen KC, Chen CI, Yang YT (2002) Unsteady unidirectional flow of a Maxwell fluid in a circular duct with different given volume flowrate conditions. J Mech Eng Sci 216(5):583–590

    Article  MathSciNet  Google Scholar 

  10. Sajid M, Abbas M, Ali N, Javed T, Ahmad I (2014) Slip flow of a Maxwell fluid past a stretching sheet. Walailak J Sci Technol 11(12):1093–1103

    Google Scholar 

  11. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction and blowing. Can J Chem Eng 55(6):744–746

    Article  Google Scholar 

  12. Kumari M, Takhar HS, Nath G (1990) MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Warme Stofubertrag 25:331–336

    Article  ADS  Google Scholar 

  13. Chamakha AJ (2004) Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int J Eng Sci 42:217–223

    Article  Google Scholar 

  14. Hayat T, Alsaedi A (2011) On thermal radiation and Joule heating effects on MHD flow of an Oldroyd-B fluid with thermospheres. Arab J Sci Eng 36:1113–1124

    Article  Google Scholar 

  15. Hayat T, Shehzad SA, Qasim M, Obaidat S (2011) Steady flow of Maxwell fluid with convective boundary conditions. Z Naturforsch A 66a:417–422

    Article  ADS  Google Scholar 

  16. Nandeppanavar MM, Vajravelu K, Abel MS (2011) Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with thermal radiation and non-uniform heat source/sink. Commun Nonlinear Sci Numer Simul 16:3578–3590

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hayat T, Zahir H, Mustafa M, Alsaedi A (2016) Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study. Results Phys 6:805–810

    Article  ADS  Google Scholar 

  18. Bilal S, Rehman KU, Malik MY, Hussain A, Khan M (2017) Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface. Results Phys 7:204–212

    Article  ADS  Google Scholar 

  19. Abbas Z, Wang Y, Hayat T, Oberlack M (2009) Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. Int J Numer Methods Fluids 59:443–458

    Article  MathSciNet  MATH  Google Scholar 

  20. Fourier JBJ (1822) Théorie Analytique De La Chaleur. Chez Firmin Didot, Pere Et Fils, Paris

  21. Cattaneo C (1948) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena Reggio Emilia 3:83–101

    MathSciNet  MATH  Google Scholar 

  22. Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  23. Oldroyd JG (1949) On the formulation of rheological equations of state. Proc R Soc Lond Ser A Math Phys Eng Sci 200:523–541

    ADS  MathSciNet  MATH  Google Scholar 

  24. Pranesh S, Kiran RV (2010) Study of Rayleigh–Bénard Magneto convection in a micropolar fluid with Maxwell–Cattaneo law. Appl Math 1:470–480

    Article  Google Scholar 

  25. Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38:77–79

    Article  MATH  Google Scholar 

  26. Straughan B (2010) Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf 53:95–98

    Article  MATH  Google Scholar 

  27. Haddad SAM (2014) Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int J Heat Mass Transf 68:659–668

    Article  Google Scholar 

  28. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  MATH  Google Scholar 

  29. Misra JC, Pal B, Gupta AS (2001) Oscillatory entry flow in a channel with pulsating walls. Int J Non-Linear Mech 36:731–741

    Article  MATH  Google Scholar 

  30. Misra JC, Pal BB, Gupta AS (1998) Hydromagnetic flow of a second-grade fluid in a channel-some applications to physiological systems. Math Models Methods Appl Sci 08:1323

    Article  MathSciNet  MATH  Google Scholar 

  31. Misra JC, Shit GC, Chandra S (2011) Hydromagnetic flow and heat transfer of a second-grade viscoelastic fluid in a channel with oscillatory stretching walls: application to the dynamics of blood flow. J Eng Math 69:91–100

    Article  MathSciNet  MATH  Google Scholar 

  32. Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358:396–403

    Article  ADS  MATH  Google Scholar 

  33. Tan WC, Masuoka T (2007) Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys Lett A 360:454–460

    Article  ADS  MATH  Google Scholar 

  34. Abbas Z, Wang Y, Hayat T, Oberlack M (2010) Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal Real World Appl 11:3218–3228

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayat T, Awais M, Sajid M (2011) Mass transfer effects on the unsteady flow of UCM fluid over stretching sheet. Int J Mod Phys B 25(21):2863–2878

    Article  ADS  MATH  Google Scholar 

  36. Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University

  37. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  38. Turkyilmazoglu M (2010) A note on the homotopy analysis method. Appl Math Lett 23:1226–1230

    Article  MathSciNet  MATH  Google Scholar 

  39. Hayat T, Khan M, Asghar S (2004) Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech 168:213–232

    Article  MATH  Google Scholar 

  40. Abbasbandy S (2007) Homotopy analysis method for heat radiation equations. Int Commun Heat Mass Transf 34:380–387

    Article  Google Scholar 

  41. Raftari B, Vajravelu K (2012) Homotopy analysis method for MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall. Commun Nonlinear Sci Numer Simul 17:4149–4162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Abbasbandy S (2010) Homotopy analysis method for the Kawahara equation. Nonlinear Anal Real World Appl 11:307–312

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ullah Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Ali, N., Sajid, M. et al. Heat Transfer Characteristics in Oscillatory Hydromagnetic Channel Flow of Maxwell Fluid Using Cattaneo–Christov Model. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 377–385 (2019). https://doi.org/10.1007/s40010-017-0470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0470-6

Keywords

Navigation