Skip to main content

Advertisement

Log in

Are Climate Extremities Changing Forest Fire Regimes in India? An Analysis Using MODIS Fire Locations During 2003–2013 and Gridded Climate Data of India Meteorological Department

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The occurrence of forest fire in India, and their interrelationship with causal drivers i.e. climate (temperature, rainfall, dry-days, El Niño), fuel status (forest types, Normalised Difference Vegetation Index) and anthropogenic disturbances (distance from road and settlements, population density) were investigated. The Nino3 sea surface temperature index was used based on sea surface temperature anomalies recorded from February to June (fire season in India) through the years 2003–2013. This was used as the representative index of El Niño southern oscillations (ENSO). The correlations among different causal drivers and fire occurrence were investigated for the entire country and different bio-geographic zones within the country. In India, the forest fire were significantly (significance f < 0.05, confidence interval 95%) correlated with average dry-days (r 0.75) and maximum average temperature (r 0.76). It was further observed that El Niño increased the temperature and consequently the dryness, which created conducive conditions for fire to occur. The integrated fire frequency ratio, which is the ratio of percent of total fire occurrence in a particular driver class to the percent of total area of that driver class, was estimated for each year from 2003 to 2013 to investigate the fire susceptibility of different forests. The yearly fire frequency ratio was estimated to understand the dynamics of fire susceptibility across the country. The fire occurrence in Deccan Peninsula and the central Himalayas in particular were found to be more sensitive towards the climate anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res. https://doi.org/10.1029/2005JG000142

    Google Scholar 

  2. Cochrane MA (2009) Fire in the tropics. In: Tropical fire ecology, Springer, Berlin, pp 1–23

  3. Bowman DM, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA (2011) The human dimension of fire regimes on Earth. J Biogeogr 38(12):2223–2236

    Article  Google Scholar 

  4. FAO (2007) Fire management global assessment 2006. FAO Forestry Paper. FAO, Rome, p 119

    Google Scholar 

  5. Schule W (1990) Landscapes and climate in prehistory: interaction of wildlife, man and fire. In: Goldammer J (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, New York, pp 273–318

    Chapter  Google Scholar 

  6. Ramakrishnan PS (1992) Agricultural systems of the Northeastern Hill regions of India. In: Gliesman SR (ed) Agroecology. Springer, Berlin. https://doi.org/10.1007/978-1-4612-3252-0_16

    Google Scholar 

  7. Tomich TP, Lewis J (2002) Reducing smoke pollution from tropical forests. ASB Policy Brief, No, p 4

    Google Scholar 

  8. Stolle F, Lambin EF (2003) Interprovincial and interannual differences in the causes of land-use fires in Sumatra, Indonesia. Environ Conserv 30(04):375–387

    Article  Google Scholar 

  9. Fujisaka S, White D (1998) Pasture or permanent crops after slash-and-burn cultivation? Land-use choice in three Amazon colonies. Agrofor Syst 42:45–59

    Article  Google Scholar 

  10. Allen TG (1986) Land clearing in African savannas. In: Lal R, Sanchez PA, Cummings RW (eds) Land clearing and development in the tropics. Balkema, Rotterdam, pp 69–80

    Google Scholar 

  11. Brandis D (1897) Forestry in India, origins and early developments (Reprint 1994). Natraj Publishers, Dehra Dun

    Google Scholar 

  12. Saigal R (1990) Modern forest fire control: the Indian experience. Unasylva 41:21–27

    Google Scholar 

  13. Pyne SJ (1994) Nataraja: India’s cycle of fire. Environ Hist Rev. https://doi.org/10.2307/3984707

    Google Scholar 

  14. Government of India (1999) Ministry of environment and forests, vol 1. National Forestry Action Programme—India, New Delhi

    Google Scholar 

  15. Bahuguna VK, Upadhyay A (2002) Forest fires in India: policy initiatives for community participation. Int For Rev 4(2):122–127

    Google Scholar 

  16. Semwal RL, Chatterjee S, Punetha JC, Pradhan S, Dutta P, Soni S, Sharma G, Singh VP, Malayia A (2003) Forest fires in India—lessons from case studies. World Wildlife Fund for Nature-India, New Delhi

    Google Scholar 

  17. Satendra, Kaushik AD (2014) Forest fire disaster management. National Institute of Disaster Management, Ministry of Home Affairs, Government of India, New Delhi

    Google Scholar 

  18. Schmerbeck J, Seeland K (2007) Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy 24(1):62–71

    Article  Google Scholar 

  19. Schmerbeck J, Fiener P (2015) Wildfires, ecosystem services, and biodiversity in tropical dry forest in India. Environ Manag. https://doi.org/10.1007/s00267-015-0502-4

    Google Scholar 

  20. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DM (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. https://doi.org/10.1038/ncomms8537

    Google Scholar 

  21. Flanningan MD, Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2

    Google Scholar 

  22. N’Datchoh ET, Konare A, Diedhiou A, Diawra A, Quansah E, Assamoi P (2015) Effects of climate variability on Savannah fire regimes in West Africa. Earth Syst Dyn. https://doi.org/10.5194/esd-6-161-2015

    Google Scholar 

  23. Devischer T, Anderson LO, Aragao LEOC, Galvan L, Malhi Y (2016) Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE. https://doi.org/10.1371/journal.pone.0161323

    Google Scholar 

  24. Siegert F, Hoffmann AA (2000) The 1998 forest fires in East Kalimantan (Indonesia): a quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sens Environ 72(1):64–77

    Article  ADS  Google Scholar 

  25. Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414(6862):437–440

    Article  ADS  Google Scholar 

  26. Patra PK, Ishizawa M, Maksyutov S, Nakazawa T, Inoue G (2005) Role of biomass burning and climate anomalies for land–atmosphere carbon fluxes based on inverse modelling of atmospheric CO2. Global Biogeochem Cycles. https://doi.org/10.1029/2004GB002258

    Google Scholar 

  27. Kidzberger T, Brown PM, Heyerdahl EK, Swetnam TW, Veblen TT (2007) Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proc Natl Acad Sci. doi:10.1073/pnas.0606078104

  28. Kogan F, Guo W (2017) Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int J Remote Sens. https://doi.org/10.1080/01431161.2016.1259679

    Google Scholar 

  29. Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L (2010) Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire 19:861–878

    Article  Google Scholar 

  30. Van der Werf GRV, Randerson JT, Giglio L, Collatz GZ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441

    Article  ADS  Google Scholar 

  31. Van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Nina period. Science 303:73–76

    Article  ADS  Google Scholar 

  32. Skinner WR, Shabbar A, Flannigan MD, Logan K (2003) Large forest fires in Canada and the relationship to global sea surface temperatures. J Geophys Res. https://doi.org/10.1029/2005JD006738

    Google Scholar 

  33. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943

    Article  ADS  Google Scholar 

  34. Balzter H, Gerard F, George C, Weedon G, Grey W, Combal B, Bartholome E, Bartalev S, Los S (2007) Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and east Siberia. J Clim 20:3713–3729

    Article  ADS  Google Scholar 

  35. Le Goff H, Flannigan MD, Bergeron Y, Girardin MP (2007) Historical fire regime shifts related to climate teleconnections in the Waswanipi area, central Quebec, Canada. Int J Wildland Fire 16:607–618

    Article  Google Scholar 

  36. Beverly JL, Flannigan MD, Stocks BJ, Bothwell P (2011) The association between Northern Hemisphere climate patterns and interannual variability in Canadian wildfire activity. Can J For Res. https://doi.org/10.1139/x11-131

    Google Scholar 

  37. Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutierrez JR (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ. https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2

  38. Allan R, Lindesay J, Parker D (1996) El Niño Southern Oscillation and climatic variability. Collingwood, Australia, CSIRO. www.publish.csiro.au/pid/184.htm

  39. McPhaden MJ (2004) Evolution of the 2002/03 El Niño. Bull Am Meteorol Soc . https://doi.org/10.1175/BAMS-85-5-677

    Google Scholar 

  40. Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Indian Acad Sci Earth Planet Sci 89:179–195

    ADS  Google Scholar 

  41. Keshavamurty RN (1982) Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern oscillation. J Atmos Sci 39:1241–1259. https://doi.org/10.1175/1520-469(1982)039<1241:ROTATS>2.0.CO;2

    Article  ADS  Google Scholar 

  42. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev. https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2

    Google Scholar 

  43. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/southern oscillation. Mon Weather Rev 115:1606–1626

    Article  ADS  Google Scholar 

  44. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of the ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim. https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2

    Google Scholar 

  45. Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on the sub-regional Indian summer monsoon rainfall. Nat Hazards. https://doi.org/10.1007/s11069-006-9091-0

    Google Scholar 

  46. Saini S, Gulati A (2014) El Niño and Indian Droughts—A Scoping Exercise. Indian Council for Research on International Economic Relations Working Paper, 276

  47. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of the ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155. https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2

    Article  ADS  Google Scholar 

  48. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309. https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2

    Article  ADS  Google Scholar 

  49. Mujumdar M, Kumar V, Krishnan R (2007) Indian summer monsoon drought of 2002 and its linkage with tropical convective activity over northwest Pacific. Clim Dyn 28:743–758. https://doi.org/10.1007/s00382-006-0208-7

    Article  Google Scholar 

  50. Soman MK, Slingo J (1997) Sensitivity of the asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical pacific ocean. Q J R Meteorol Soc 123:309–336. https://doi.org/10.1002/qj.49712353804

    Article  ADS  Google Scholar 

  51. Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q J R Meteorol Soc 133:749–764. https://doi.org/10.1002/qj.45

    Article  ADS  Google Scholar 

  52. Ashok K, Weng H, Behera S, Rao SA, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007

    Article  ADS  Google Scholar 

  53. Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño Events as simulated by the GFDL, 2.1 coupled GCM. J Clim. https://doi.org/10.1175/2009J

    Google Scholar 

  54. Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim. https://doi.org/10.1175/2010JCLI3171.1

    Google Scholar 

  55. Marathe S, Ashok K, Swapna P, Sabin P (2015) Revisiting El Niño Modokis. Clim Dyn. https://doi.org/10.1007/s00382-015-2555-8

    Google Scholar 

  56. Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical pacific? Geophys Res Lett. https://doi.org/10.1029/2011GL050232

    Google Scholar 

  57. Jadhav J, Swapna P, Shamal M, Ashok K (2015) On the possible cause of distinct El Niño types in the recent decades. Sci Rep. https://doi.org/10.1038/srep17009

    Google Scholar 

  58. Ratnam JV, Behera SK, Masumoto Y, Takahashim K, Yamagata T (2010) Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys Res Lett. https://doi.org/10.1029/2010GL042798

    Google Scholar 

  59. Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Article  ADS  Google Scholar 

  60. Matson M, Stephens G, Robinson J (1987) Fire detection using data from the NOAA-N satellites. Int J Remote Sens 8(7):961–970

    Article  Google Scholar 

  61. Robinson JM (1991) Fire from space: global fire evaluation using infrared remote sensing. Int J Remote Sens 12(1):3–24

    Article  ADS  Google Scholar 

  62. Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32315–32338

    Google Scholar 

  63. Kaufman YJ, Setzer A, Justice C, Tucker CJ, Pereira MC, Fung I (1990) Remote sensing of biomass burning in the tropics. In: Fire in the tropical biota, Springer, Berlin, pp 371–399

  64. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  ADS  Google Scholar 

  65. Justice CO, Kendall JD, Dowty PR, Scholes RJ (1996) Satellite remote sensing of fires during the SAFARI campaign using NOAAAVHRR data. J Geophys Res 101:23851–23863

    Article  ADS  Google Scholar 

  66. Giglio L, Kendall JD, Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20:1947–1985

    Article  Google Scholar 

  67. Giglio L, Kendall JD, Mack R (2003) A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int J Remote Sens 24(22):4505–4525

    Article  Google Scholar 

  68. Cahoon DR Jr, Stocks BJ, Alexander ME, Baum BA, Goldammer JG (2000) Wildland fire detection from space: theory and application. In: Innes JL, Beniston M, Verstraete MM (eds) Biomass burning and its inter-relationships with the climate system. Springer, Netherlands, pp 151–169

    Chapter  Google Scholar 

  69. Chand TK, Badarinath KVS, Prasad VK, Murthy MSR, Elvidge CD, Tuttle BT (2006) Monitoring forest fires over the Indian region using Defense Meteorological Satellite Program-Operational Linescan System nighttime satellite data. Remote Sens Environ 103(2):165–178

    Article  ADS  Google Scholar 

  70. Bond WJ, Keeley JE (2005) Fire as a global herbivore: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394

    Article  Google Scholar 

  71. Rollins MG, Morgan P, Swetnam T (2002) Landscape-scale controls over 20th century fire occurrence in two large Rocky Mountain (USA) wilderness areas. Landsc Ecol 17(6):539–557

    Article  Google Scholar 

  72. Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2009.06.009 PMID: 19748151

    Google Scholar 

  73. Allexander JD, Seavy NE, Ralph CJ, Hogoboom B (2006) Vegetation and topographical correlates of fire severity from two fire in the Klamath-Siskiyou region of Oregon and California. Int J Wildland Fire 15:237–245

    Article  Google Scholar 

  74. McKenzie D, Gedalof Z, Peterson DL, Mote P (2004) Climatic change, wildfire, and conservation. Conserv Biol. https://doi.org/10.1111/j.1523-1739.2004.00492.x

    Google Scholar 

  75. Aldersley A, Murray SJ, Cornell SE (2011) Global and regional analysis of climate and human drivers of wildfire. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2011.05.032 PMID: 21689843

    Google Scholar 

  76. Kasischke ES, Christensen NL Jr, Stocks BJ (1995) Fire, global warming and the mass balance of carbon in boreal forests. Ecol Appl 5:437–451

    Article  Google Scholar 

  77. Weber MG, Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 5:145–166

    Article  Google Scholar 

  78. Kodandpani N, Cochrane MA, Sukumar R (2008) A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For Ecol Manag. https://doi.org/10.1016/j.foreco.2008.05.006

    Google Scholar 

  79. Prasad VK, Badrinath KVS, Eaturu A (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J Environ Manag. https://doi.org/10.1016/j.jenvman.2006.11.017

    Google Scholar 

  80. Amarnath G, Babar S, Jentsch A, Sudhakar S, Murty MSR (2010) Tracking fires in india using advanced along track scanning radiometer (A)ATSR data. Remote Sens. https://doi.org/10.3390/rs2020591

    Google Scholar 

  81. Krishna PH, Reddy CS (2012) Assessment of increasing threat of forest fires in Rajasthan, India using multi-temporal remote sensing data (2005–2010). Curr Sci 102(9):1288–1297

    Google Scholar 

  82. Reddy CS, Krishna PH, Anitha K, Joseph S (2012) Mapping and inventory of forest fires in Andhra Pradesh, India: current status and conservation needs. ISRN Forestry. https://doi.org/10.5402/2012/380412

  83. Srivastava P, Garg A (2013) Emmissions from forest fires in India—an assessment based on MODIS fire and global land cover products. Clim Change Environ Sustain 1(2):138–144

    Article  Google Scholar 

  84. Srinivas K, Roy PS, Reshma MR (2015) Forest fire locations in India, their spatio-temporal patterns and Impact on climate variables. In: Proceedings of national conference on open source GIS: opportunities and challenges, Department of Civil Engineering, IIT (BHU), Varanasi

  85. Mondel N, Sukumar R (2016) Fires in seasonally dry tropical forest: testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE. https://doi.org/10.1371/journal.pone.0159691

    Google Scholar 

  86. Singh RP, Gumber S, Tewari P, Singh SP (2016) Nature of forest fires in Uttarakhand: frequency, size and seasonal patterns in relation to pre-monsoonal environment. Curr Sci. https://doi.org/10.18520/cs/v111/i2/395-398

    Google Scholar 

  87. Forest Survey of India (2013) India state of forest report 2013. Forest Survey of India, Dehradun

    Google Scholar 

  88. Rodgers WA, Panwar HS (1988) Biogeographical classification of India. Wildlife Institute of India, Dehradun

    Google Scholar 

  89. Champion HG, Seth SK (2005) A revised survey of the forest types of India. Natraj Publishers, Dehradun

    Google Scholar 

  90. MODIS active fire product. http://modis-fire.umd.edu/. Accessed 15 June 2017

  91. Roy PS, Behera MD, Murthy MSR, Roy A et al (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159

    Article  Google Scholar 

  92. SRTM. http://glcf.umd.edu/data/srtm. Accessed 15 June 2017

  93. eMODIS Normalised Difference Vegetation Index. http://earthexplorer.usgs.gov/. Accessed 15 June 2017

  94. District-wise human population (2001 and 2011). http://www.censusindia.gov.in/. Accessed 15 June 2017

  95. Anonymous (2011). Drivers of land use/land cover change: a case study in narmada river basin, for land use/land cover dynamics and impact of human dimensions in Indian River Basins, A project under ISRO-GBP program. Scientific Report—2. Indian Institute of Remote Sensing, Dehradun, India

  96. Pai DS, Sridhar Latha, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1–18

    Google Scholar 

  97. Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded temperature dataset (1969–2005) for the Indian region. Atmos Sci Lett 10:249–254

    Google Scholar 

  98. Indian administrative boundaries up to district level. http://datameet.org/wiki/indiangeospatialdata. Accessed 15 June 2017

  99. Data relating to major roads. http://www.diva-gis.org/. Accessed 15 June 2017

  100. Data relating to settlements (towns and cities). http://download.geofabrik.de/. Accessed 15 June 2017

  101. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

    Google Scholar 

  102. Wright K (2015).Corrgrampackage.https://cran.r-project.org/web/packages/corrgram/corrgram.pdf

  103. Wei T, Simco V (2016). https://cran.r-project.org/web/packages/corrplot/corrplot.pdf

  104. Corrgram in R. http://www.sthda.com/english/wiki/visualize-correlation-matrix-using-correlogram. Accessed 15 June 2017

  105. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides. https://doi.org/10.1007/s10346-006-0047

    Google Scholar 

  106. Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320

    Article  Google Scholar 

  107. Biswas S, Vadrevu KP, Lwin ZM, Lasko K, Justice CO (2015) Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS ONE. https://doi.org/10.1371/journal.pone.0124346

    Google Scholar 

  108. IMD (India Meteorological Department) (2009). Annual Climate Summary 2009. National Climate Centre, Office of the Additional Director General of Meteorology (Research), India Meteorology Department, Pune, India

  109. Karthik T, Veeraswami GG, Samal PK (2009) Forest recovery following shifting cultivation: an overview of existing research. Trop Conserv Sci 2(4):374–387

    Article  Google Scholar 

  110. Wangpang T, Tangjang S (2012) Slash-and-burn agriculture in Eastern Himalayan zone of Arunachal Pradesh, North-East India. Curr Sci 102(9):1247–1248

    Google Scholar 

  111. Padalia H, Mondal PP (2014) Spatio-Temporal trends of fire in Slash and Burn Agriculture Landscape: a case study from Nagaland, India. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-8, 2014 ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad, India

  112. Suresh HS, Dattaraja HS, Sukumar R, (1996) The flora of Mudumalai wildlife sanctuary, Tamil Nadu, southern India. Indian For 122(6):507–519

    Google Scholar 

  113. Freifelder RR, Vitousek PM, D’antonio CM (1998) Microclimate change and effect on fire following forest-grass conversion in seasonally dry tropical woodland. Biotropica 30(2):286–297

    Article  Google Scholar 

  114. http://www.enr.gov.nt.ca/. Accessed 15 June 2017

  115. Jaiswal RK, Mukherjee S, Raju K, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(2002):1–10

    Article  Google Scholar 

  116. Hoffman KM, Gavin DG, Starzomski BM (2016) Sevenhundredyearsof human-drivenand climate-influencedfire activityinaBritish Columbiacoastaltemperate rainforest. R Soc Open Sci 3:160608. https://doi.org/10.1098/rsos.160608

    Article  Google Scholar 

  117. IMD (India Meteorological Department) (2006) Annual climate summary 2006. National Climate Centre, Office of the Additional Director General of Meteorology (Research), Pune

    Google Scholar 

  118. IMD (India Meteorological Department) (2011) Annual report 2011. Publication division, India Meteorology Department, New Delhi

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the India Meteorological Department, Govt. of India for providing the climate data (rainfall and temperature) to carry out the present research. Acknowledgement is due to Ms. Feba Francis, University of Hyderabad, India, for providing the NINO3 time series. The authors are thankful to Dr. R. Krishnan for fruitful discussion related to temperature and rainfall dynamics vis a vis changing land use patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish P. Kale.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, M.P., Ramachandran, R.M., Pardeshi, S.N. et al. Are Climate Extremities Changing Forest Fire Regimes in India? An Analysis Using MODIS Fire Locations During 2003–2013 and Gridded Climate Data of India Meteorological Department. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 827–843 (2017). https://doi.org/10.1007/s40010-017-0452-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0452-8

Keywords

Navigation