Skip to main content
Log in

Silicon Wafer Surface Reflectance Investigations by Using Different Surface Texturing Parameters

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

This paper discusses surface texturization of monocrystalline silicon wafer 〈100〉 by using a very simple and cost effective technique consisting of a combination of mechanical grinding and chemical etching, to achieve desired surface reflectance for solar cell applications. The abrasive used for mechanical grinding is aluminum oxide powder with different grain sizes. Potassium hydroxide–isopropyl alcohol solution (with different molar concentrations) is used as alkaline etchant. The change in surface reflectance may be correlated with the change in surface roughness parameters of silicon wafer after texturing. The roughness measurements are performed by using white light interferometry based three dimensional optical profiler. Reflectance measurements of texturized silicon wafer samples are carried out by ultra violet visible spectrophotometer. A comparative reflectance study of silicon wafer samples after using these methods reveals that the combination of mechanical grinding and alkaline etching is more effective for surface texture modification in terms of significantly reduced surface reflectance as compared to a single texturization technique. After reflectance data analysis of texturized samples, correlations have been established for percentage reflectance versus abrasive grain size and percentage reflectance versus molar concentration of etchant. These correlations provide a combination of abrasive grain size and etchant molar concentration to achieve desired value of percentage surface reflectance of silicon wafer from 23.97 to 11.85% at 800 nm wavelength, which is significant for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lingen C, Shengbing Z, Fengrui S (2010) Constructal minimization of emitter grid resistance of solar cell with variable cross-section collectors. Indian J Pure Appl Phys 48:586–592

    Google Scholar 

  2. Xiao SQ, Xu S (2014) High-efficiency silicon solar cells-materials and devices physics. Crit Rev Solid State Mater Sci 39:277–317

    Article  ADS  Google Scholar 

  3. Xiao SQ, Xu S, Ostrikov K (2014) Low-temperature plasma processing for Si photovoltaics. Mater Sci Eng R-Rep 78:1–29

    Article  Google Scholar 

  4. Xiao SQ, Xu S, Zhou HP, Wei DY, Huang SY, Xu LX, Sern CC, Guo YN, Khan S (2012) Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing. Appl Phys Lett 100:233902

    Article  ADS  Google Scholar 

  5. Kuo Ch, Chen YR (2012) Rapid optical measurement of surface texturing result of crystalline silicon wafers for high efficiency solar cells application. Opt Int J Light Electron Opt 123:310–313

    Article  Google Scholar 

  6. Yousong L, Guangbin J, Wang J, Liang X, Zewen Z, Yi S (2012) Fabrication and photo catalytic properties of silicon nanowires by metal-assisted alkaline etching: effect of H2O2 concentration. Nanoscale Res Lett 7:663

    Article  ADS  Google Scholar 

  7. Androula GN, Violetta G, Charalambos K (2011) Si nanowires by a single-step metal-assisted alkaline etching process on lithographically defined areas: formation kinetics. Nanoscale Res Lett 6:597

    Article  Google Scholar 

  8. Shinya K, Yasuyoshi K, Yuya W, Yasuharu Y, Yamada A, Yoshimi O, Yusuke N, Masaki H (2013) Optical assessment of silicon nanowire arrays fabricated by metal-assisted alkaline etching. Nanoscale Res Lett 8:216

    Article  Google Scholar 

  9. Hylton JD, Burgers AR, Sinke WC (2004) Alkaline etching for reflectance reduction in multicrystalline silicon solar cells. J Electrochem Soc 151:G408–G427

    Article  Google Scholar 

  10. Moona G, Kapruwan P, Sharma R, Ojha VN (2014) NCNRE 14, pp 590–592

  11. Ryabova E (2009) A review of solar wafer cleaning and texturing methods. PV World Mag 1:12

    Google Scholar 

  12. Sethi C, Anand VK, Walia K, Sood SC (2012) Optimization of surface reflectance for alkaline textured monocrystalline silicon solar cell. TECHNIA Int J Comput Sci Commun Technol 5:785–788. ISSN: 0974-3375

  13. Weiying O, Zhang Y, Hailing L, Zhao L, Chunlan Z, Hongwei D, Liu M, Weiming L, Zhang J, Wenjing W (2010) Texturization of mono-crystalline silicon solar cells in TMAH without the addition of surfactant. J Semicond 31(1–5):106002

    Article  Google Scholar 

  14. Wijekoon K, Weidman T, Paak S, MacWilliams K (2010) Production ready novel texture etching process for fabrication of single crystalline silicon solar cell. Appl Mater IEEE. doi:10.1109/PVSC.2010.5614441

    Article  Google Scholar 

  15. Dzhafarov T (2013) Silicon solar cells with nanoporous silicon layer. INTECH. doi:10.5772/51593

    Article  Google Scholar 

  16. Sakoda T, Matsukuma K, Sung YM, Otsubo K, Tahara M, Nakashima Y (2005) Additional plasma surface texturing for single-crystalline silicon solar cells using dielectric barrier discharge. Jpn J Appl Phys 44:1730–1731

    Article  ADS  Google Scholar 

  17. Chu AK, Wang JS, Tsai Y, Lee CK (2009) A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafer. Sol Energy Mater Sol Cells 93:1276–1280

    Article  Google Scholar 

  18. Nositschka WA, Beneking C, Voigt O, Kurz H (2003) Texturing of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal mask. Sol Energy Mater Sol Cells 76:155–166

    Article  Google Scholar 

  19. Chen G, Kashkous I (2010) Effect of pre cleaning on texturization of c-Si wafers in a KOH/IPA mixture. J Electrochem Soc 25:3–10

    Google Scholar 

  20. King DL, Buck ME (1991) Experimental optimization of an anisotropic etching process for random texturisation of silicon solar cells. In: Proceedings of 22nd IEEE PVSC, p 308

  21. Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre JF, Chaumartin A, Fave A, Lemiti M (2006) Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol Energy Mater Sol Cells 90:2319–2328

    Article  Google Scholar 

  22. Seidel H, Csepregi L, Heuberger A, Baumgartel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions: orientation dependence and behaviour of passivation layers. J Electrochem Soc 137:3612–3626

    Article  Google Scholar 

  23. Fengxiang C, Isheng W (2011) Solar cells-silicon wafer based technologies. INTECH. doi:10.5772/20962

    Article  Google Scholar 

  24. Brendel R (1994) Proceedings of 12th EUPVSC, Amsterdam, Netherlands (WIP, Munich), pp 1339–1342

  25. Chand M, Mehta A, Sharma R, Ojha VN, Chaudhary KP (2011) Roughness measurement using optical profiler with self-reference laser and stylus instrument—a comparative study. Indian J Pure Appl Phys 49:335–339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girija Moona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moona, G., Kapruwan, P., Sharma, R. et al. Silicon Wafer Surface Reflectance Investigations by Using Different Surface Texturing Parameters. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 88, 617–623 (2018). https://doi.org/10.1007/s40010-017-0384-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0384-3

Keywords

Navigation