Skip to main content
Log in

Abstract

Let (Mg) be an \(n-\)dimensional (pseudo)-Riemannian manifold and \( f:M\rightarrow {\mathbb {R}}\) be a smooth function whose Hessian with respect to g is non-degenerate. One can define the associated (pseudo)-Riemannian Hessian metric \(h=\nabla ^{2}f\) on M, where \(\nabla \) is the Levi-Civita connection of g. In the present paper we investigate conditions under which the manifold M equipped with a (complex) golden structure and with the Hessian metric h is a (holomorphic) locally decomposable golden (Norden) Hessian manifold. Furthermore some examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyrovska R (2005) The golden ratio ionic and atomic radii and bond lengths. Mol Phys 103(6):877–882

    Article  ADS  Google Scholar 

  2. Marek-Crnjac L (2006) The golden mean in the topology of four-manifolds in conformal field theory in the mathematical probability theory and in Cantorian spacetime. Chaos, Solitons Fractals 28:1113–1118

    Article  ADS  MATH  Google Scholar 

  3. Marek-Crnjac L (2005) Periodic continued fraction representations of different quarks mass ratios. Chaos, Solitons Fractals 25:807–814

    Article  ADS  Google Scholar 

  4. Crasmareanu M, Hretcanu C (2008) Golden differential geometry. Chaos Solitons Fractals 38(5):1229–1238

    Article  ADS  MathSciNet  Google Scholar 

  5. Hretcanu C, Crasmareanu M (2007) On some invariant submanifolds in a Riemannian manifold with golden structure. An Stiins Univ Al I Cuza Iasi Mat (NS) 53:199–211

    MathSciNet  MATH  Google Scholar 

  6. Hretcanu C, Crasmareanu M (2009) Applications of the golden ratio on Riemannian manifolds. Turk J Math 33(2):179–191

    MathSciNet  MATH  Google Scholar 

  7. Shima H (1976) On certain locally flat homogeneous manifolds of solvable Lie groups. Osaka J Math 13(2):213–229

    MathSciNet  MATH  Google Scholar 

  8. Cheng SY, Yau ST (1982) The real Monge-Ampere equation and affine flat structure. Proc 1980 Beijing Symp Differ Geom Differ Equ 1:339–370

    MathSciNet  Google Scholar 

  9. Sasaki T (1980) Hyperbolic affine hyperspheres. Nagoya Math J 77:107–123

    MathSciNet  MATH  Google Scholar 

  10. Nesterov Y, Todd MJ (2002) On the Riemanian geometry defined by self-concordant barriers and interior point methods. Found Comp Math 2(4):333–361

    Article  MathSciNet  MATH  Google Scholar 

  11. Duistermaat J (2001) On Hessian Riemannian structures. Asian J Math 5(1):79–91

    MathSciNet  MATH  Google Scholar 

  12. Shima H, Yagi K (1997) Geometry of Hessian manifolds. Differ Geom Appl 7(3):277–290

    Article  MathSciNet  MATH  Google Scholar 

  13. Shima H (2007) The geometry of Hessian ftructures. World Scientific Publ. Co., Singapore

    Book  Google Scholar 

  14. Udrişte C, Bercu G (2005) Riemannian Hessian metrics. Analele Univ Bucureşti 55(1):189–204

    Google Scholar 

  15. Bercu G, Corcodel C, Postolache M (2011) Advances on Hessian structures. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys 73(1):63–70

    MathSciNet  Google Scholar 

  16. Bercu G, Corcodel C, Postolache M (2009) The geodesics of a pseudo-Riemannian manifold. J Adv Math Stud 2(2):9–16

    MathSciNet  MATH  Google Scholar 

  17. Bercu G (2006) Pseudo-Riemannian structures with the same connection. Balkan J Geom Appl 11(1):23–38

    MathSciNet  MATH  Google Scholar 

  18. Udriste C (1996) Riemannian convexity in programming (II). Balkan J Geom Appl 1(1):99–109

    MathSciNet  MATH  Google Scholar 

  19. Udriste C (1994) Convex functions and optimization methods on Riemannian manifolds, vol 297., MAIAKluwer, Boston

    Book  MATH  Google Scholar 

  20. Tachibana S (1960) Analytic tensor and its generalization. Tohoku Math J 12(2):208–221

    Article  MathSciNet  MATH  Google Scholar 

  21. Yano K, Ako M (1968) On certain operators associated with tensor fields. Kodai Math Semin Rep 20:414–436

    Article  MathSciNet  MATH  Google Scholar 

  22. Norden AP (1960) On a certain class of four-dimensional A-spaces. Izv Vuzov Mat 4:145–157

    MathSciNet  Google Scholar 

  23. Salimov AA, Akbulut K, Aslanci S (2009) A note on integrability of almost product Riemannian structures. Arab J Sci Eng Sect A Sci 34(1):153–157

    MathSciNet  MATH  Google Scholar 

  24. Gezer A, Cengiz N, Salimov AA (2013) On integrability of golden Riemannian structures. Turk J Math 37(4):693–703

    MathSciNet  MATH  Google Scholar 

  25. Kumar RD (2005) Higher order Hessian structures on manifolds. Proc Indian Acad Sci Math Sci 115(3):259–277

    Article  MathSciNet  MATH  Google Scholar 

  26. Schürman T (2004) Bias analysis in entropy estimation. J Phys A 37:295–301

    Article  MathSciNet  Google Scholar 

  27. Iscan M, Salimov AA (2009) On Kähler-Norden manifolds. Proc Indian Acad Sci (Math Sci) 119(1):71–80

    Article  MathSciNet  MATH  Google Scholar 

  28. Moore GA (1993) A fibonacci polynomial sequence defined by multidimensional continued fractions; and higher-order golden ratios. Fibonacci Q 31(4):354–364

    MATH  Google Scholar 

  29. Bradley S (2000) A geometric connection between generalized fibonacci sequences and nearly golden sections. Fibonacci Q 38(2):174–179

    MATH  Google Scholar 

  30. de Spinadel VW (1999) The metallic means family and multifractal spectra. Nonlinear Anal Ser B 36(6):721–745

    Article  MATH  Google Scholar 

  31. Stakhov A (1998) The golden section and modern harmony mathmatics. Applications of Fibonacci numbers, vol 7. Kluwer Academic Publishers, Dordrecht, pp 393–399

    Chapter  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Professor Mircea Crasmareanu for valuable comments and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Gezer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezer, A., Karaman, C. Golden-Hessian Structures. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 41–46 (2016). https://doi.org/10.1007/s40010-015-0226-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-015-0226-0

Keywords

Mathematical Subject Classification

Navigation