Skip to main content
Log in

Black Rice Modified Carbon Paste Electrode for the Voltammetric Determination of Pb(II), Cd(II), Cu(II) and Zn(II)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The present communication describes the development and application of black rice modified carbon paste electrode (BRMCPE) for the trace determination of Pb(II), Cd(II), Cu(II) and Zn(II) by square wave anodic stripping voltammetry. Electrochemical impedance spectra showed reduction of charge transfer resistance and higher electrocatalytic behavior of the sensor also supported by the cyclic voltammetry characterization of the electrode. The electrochemical parameters were optimized with reference to the amount of modifier, supporting electrolyte, accumulation time and accumulation potential. Mutual interference of the ions and the effect of surfactants on the metal ions were also investigated. Experimental analysis via BRMCPE under optimized conditions resulted in stripping responses with good linearity in the range 50–200, 400–1000, 250–700, 400–1000 μg/l and low limits of detection being 14.58, 154.83, 125.32, 134.04 μg/l respectively for Pb(II), Cd(II), Cu(II) and Zn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torma F, Grun A, Bitter I, Toth K (2009) Calixarine/nafion-modified bismuth-film electrodes for adsorptive stripping voltammetric determination of lead. Electroanalysis 21(17–18):1961–1969

    Article  Google Scholar 

  2. Jannata B, Sadeghib N, Oveisib MR, Behfarc A, Komeilizadehd H, Shafaatid A (2009) Simultaneous determination of lead, cadmium, copper and zinc in infant formula by anodic stripping voltammetry. Iran J Pharm Res 8(3):159–162

    Google Scholar 

  3. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens Actuat B 117:99–106

    Article  Google Scholar 

  4. Gupta VK, Singh AK, Mehtab S, Gupta B (2006) Cobalt(II)-selective PVC membrane based on a schiff base complex of N,N’-bis(salicylidene)-3,4-diaminotoluene. Anal Chim Acta 566:5–10

    Article  Google Scholar 

  5. Gupta VK, Jain AK, Kumar P (2006) PVC-based membranes of n,n′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens Actuat B 120:259–265

    Article  Google Scholar 

  6. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sens Actuat B 113:182–186

    Article  Google Scholar 

  7. Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) Comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta 51:2547–2553

    Article  Google Scholar 

  8. Gupta VK, Goyal RN, Sharma RA (2009) Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta 647:66–71

    Article  Google Scholar 

  9. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis 20:757–764

    Article  Google Scholar 

  10. Goyal RN, Gupta VK, Bachheti N (2007) Fullerene-c60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping. Anal Chim Acta 597:82–89

    Article  Google Scholar 

  11. Gupta VK, Singh AK, Khayat MA, Gupta B (2007) Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal Chim Acta 590:81–90

    Article  Google Scholar 

  12. Goyal RN, Gupta VK, Oyama M, Bachheti N (2007) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  Google Scholar 

  13. Gupta VK, Singh AK, Gupta B (2007) Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583(2):340–348

    Article  Google Scholar 

  14. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode. Electroanalysis 17:2217–2223

    Article  Google Scholar 

  15. Gupta VK, Chandra S, Lang H (2005) A highly selective mercury electrode based on a diamine donor ligand. Talanta 66:575–580

    Article  Google Scholar 

  16. Gupta VK, Prasad R, Kumar A (2003) Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta 60:149–160

    Article  Google Scholar 

  17. Gupta VK, Chandra S, Mangla R (2002) Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim Acta 57:1579–1586

    Article  Google Scholar 

  18. Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 11(8):573–576

    Article  Google Scholar 

  19. Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens Actuat B 134(2):816–821

    Article  Google Scholar 

  20. Gupta VK, Jain S, Khurana U (1997) A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II). Electroanalysis 7(6):478–480

    Article  Google Scholar 

  21. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408:179–196

    Article  Google Scholar 

  22. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical analysis of some toxic metals by ion-selective electrodes. Crit Rev Anal Chem 41:282–313

    Article  Google Scholar 

  23. Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14(4):284–302

    Article  Google Scholar 

  24. Gupta VK, Singh LP, Singh R, Upadhyay N, Sethi B (2012) A novel copper (II) selective sensor based on dimethyl 4,4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. J Mol Liq 174:11–16

    Article  Google Scholar 

  25. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118

    Article  Google Scholar 

  26. Mojica EE, Micor JRL (2007) Utilization of plant refuses as component of heavy metal ion sensors in water samples. J Appl Sci Environ Manage 11(3):69–74

    Google Scholar 

  27. Wang F, Liu J, JuWu Y, Gao Y, Huang X (2009) Anodic stripping voltammetric determination of mercury(II) in water using a 4-tert-butyl-1-(ethoxycarbonylmethoxy)thiacalix[4]arene modified glassy carbon electrode. J Chin Chem Soc 56:778–784

    Google Scholar 

  28. Rajawat DS, Satsangee SP (2011) Voltammetric determination of Pb(II) ions by carbon paste electrode modified with lemon grass powder. Res J Chem Environ 15(3):55–59

    Google Scholar 

  29. Serrano N, Martn N, Daz-Cruz JM, Arino C, Esteban M (2009) Bismuth film electrode in metal complexation studies: stripping analysis of the Pb(II)-, Cd(II)-, and Zn(II)-binding with phthalate. Electroanalysis 21(3–5):431–438

    Article  Google Scholar 

  30. Berbel F, Cortes J, Dıaz-Cruz JM, Arino C, Esteban M (1998) Anodic stripping voltammetry of metal ions in mixtures of ligands. Electroanalysis 10(6):417–422

    Article  Google Scholar 

  31. Cobelo-Garca A, Santos-Echeand J, Prego R, Nietob O (2005) Direct simultaneous determination of Cu, Ni and V in seawater using adsorptive cathodic stripping voltammetry with mixed ligands. Electroanalysis 17(10):906–911

    Article  Google Scholar 

  32. Heitzmann M, Basaez L, Brovelli F, Bucher C, Limosin D, Pereira E, Rivas BL, Royal G, Aman E, Moutet J (2005) Voltammetric sensing of trace metals at a poly(pyrrole-malonic acid) film modified carbon electrode. Electroanalysis 7(21):1970–1976

    Article  Google Scholar 

  33. Buica GO, Bucher C, Moutet J, Royal G, Saint-Aman E, Ungureanu EM (2009) Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode. Electroanalysis 21(1):77–86

    Article  Google Scholar 

  34. Won M, Yoon J, Shim Y (2005) Determination of selenium with a poly(1,8-diamino-naphthalene)-modified electrode. Electroanalysis 17(21):1952–1958

    Article  Google Scholar 

  35. Tamer U, Ertas N, Gndogdu Y (2008) A selective film based on poly(3-octylthiophene) doped with dihydroxyanthraquinone sulfonate. Electroanalysis 20(16):1805–1810

    Article  Google Scholar 

  36. Tamer U, Oymak T, Ertas N (2007) Voltammetric determination of mercury(II) at poly(3-hexylthiophene) film electrode. Effect of halide ions. Electroanalysis 19(24):2565–2570

    Article  Google Scholar 

  37. Chow E, Gooding JJ (2006) Peptide modified electrodes as electrochemical metal ion sensors. Electroanalysis 18(15):1437–1448

    Article  Google Scholar 

  38. Kozan JVB, Silva RP, Serrano SHP, Lima AWO, Angnes L (2007) Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocusnucifera L.) fibers. Anal Chim Acta 591:200–207

    Article  Google Scholar 

  39. Liawrungrath S, Purachat P, Oungpipat W, Dongduen C (2008) Sunflower leaves tissue-based bioelectrode with amperometric flow-injection system for glycolic acid determination in urine. Talanta 77:500–506

    Article  Google Scholar 

  40. Fiol N, de la Torre F, Demeyere P, Florido A, Villaescusa I (2007) Vegetable waste based sensors for metal ion determination. Sens Actuat B 122:187–194

    Article  Google Scholar 

  41. Park SD, Sam Y, Kim SJ, Chang HI (2008) Isolation of anthocyanin from black rice (Heugjinjubyeo) and screening of its antioxidant activities. Kor J Microbiol Biotechnol 36(1):55–60

    Google Scholar 

  42. Pyrzynska K, Pe Kal A (2011) Flavonoids as analytical reagents. Crit Rev Anal Chem 41(4):335–345

    Article  Google Scholar 

  43. Xia F, Zhang X, Zhou CH, Sun A, Dong Y, Liu Z (2010) Simultaneous determination of copper, lead and cadmium at hexagonal mesoporous silica immobilized quercetin modified carbon paste electrode. J Autom Methods Manage Chem. doi:10.1155/2010/824197

    Google Scholar 

  44. Švancara I, Walcarius A, Kalcher K, Vytřas K (2009) Carbon paste electrodes in the new millennium. Central Eur J Chem 7(4):598–656

    Article  Google Scholar 

  45. Rodriguez-Saona LE, Wrolstad RE (2001) Extraction, isolation and purification of anthocyanins. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York, pp F1.1.1–F1.1.11

    Google Scholar 

  46. Choi SW, Kang WW, Osawa T (1994) Isolation and identification of anthocyanins pigments in black rice. Foods Biotechnol 3:131–136

    Google Scholar 

  47. Lee JH, Kang NS, Shin SO, Shin SH, Lim SG, Suh DY, Baek IY, Park KY, Ha TJ (2009) Characterization of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chem 112:226–231

    Article  Google Scholar 

  48. Rezaei B, Damiri S (2008) Multiwalled carbon nanotubes modified electrode as a sensor for adsorptive stripping voltammetric determination of hydrochlorothiazide. IEEE Sens J 8(9):1523–1529

    Article  Google Scholar 

  49. Gardea-Torresdey J, Darnall D, Wang J (1988) Bioaccumulation and measurement of copper at an alga-modified carbon paste electrode. Anal Chem 60:72–76

    Article  Google Scholar 

  50. Tiemann KJ, Gamez G, Parsons JG, Bess-Oberto L (2001) Environmental analysis of copper ions with a carbon paste electrode modified with alfalfa biomass. Symposia papers presented before the Division of Environmental Chemistry. Am Chem Soc 41(1):219–222

    Google Scholar 

  51. Mojica EE, Merca FE, Micor JRL (2002) Fiber of kapok (Ceiba Petandra) as component of a metal sensor for lead in water samples. Philipp J Crop Sci 27(2):37–42

    Google Scholar 

  52. Ouangpipat W, Lelasattarathkul T, Dongduen C, Liawruangrath S (2003) Bioaccumulation and determination of lead using treated-Pennisetum-modified carbon paste electrode. Talanta 61(4):455–464

    Article  Google Scholar 

  53. Mojica ERE, Merca FE (2005) Anodic stripping voltammetric determination of mercury(II) using lectin-modified carbon paste electrode. J Appl Sci 5(8):1461–1465

    Google Scholar 

  54. Elvińa RO, Mojica ERE (2005) Orange peel essential oil as component of a metal sensor for lead(II) ion determination in aqueous solutions. J Appl Sci Environ Manag 9(2):23–27

    Google Scholar 

  55. Mojica ERE, Tocino AB, Micor JRL, Deocaris CC (2005) A feather-trode sensor for detecting lead ions. Philipp J Sci 134(1):51–56

    Google Scholar 

  56. Mojica EE, Micor JRL, Deocaris CC (2005) KaCCFEHM-trode example of a radiation synthesized metal sensor with a multi composite modifier. J Appl Sci Res 1(1):99–102

    Google Scholar 

  57. Mojica EE, Micor JRL, Gomez SP, Deocaris CC (2006) Lead detection using a pineapple bioelectrode. Philipp Agric Sci 89:134–140

    Google Scholar 

  58. Mojica EE, Vidal JM, Pelegrina AB, Micor JRL (2007) Voltammetric determination of lead(II) ions at carbon paste electrode modified with banana tissue. J Appl Sci 7(9):1286–1292

    Article  Google Scholar 

  59. Mojico ERE, Santos JH, Micor JRL (2007) Determination of lead using a feather modified carbon paste electrode using anodic stripping voltammetry. World Appl Sci J 2(5):512–518

    Google Scholar 

Download references

Acknowledgments

Financial support from Ministry of Human Resource and Development, India under NMEICT project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soami Piara Satsangee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devnani, H., Rajawat, D.S. & Satsangee, S.P. Black Rice Modified Carbon Paste Electrode for the Voltammetric Determination of Pb(II), Cd(II), Cu(II) and Zn(II). Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84, 361–370 (2014). https://doi.org/10.1007/s40010-013-0112-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-013-0112-6

Keywords

Navigation