Skip to main content

Advertisement

Log in

Preformulation and evaluation of multi-layer tablets

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

The tablet is the most common drug formulation in the pharmaceutical industry. With the invention of new pharmaceutical tablet compression technologies, more advanced tablet designs, such as multi-layer tablets (MLTs), have been reported.

Area covered

This review focuses on (1) the advantages and manufacturing challenges of MLTs, (2) the underlying mechanisms in compaction, and (3) technologies for the evaluation of adhesion between layers, which is the most important factor in quality of MLTs.

Expert opinion

The use of MLTs is gradually increasing due to the variety of drug combinations in use and the complexity of the release design of the different formulations. Essentially, an MLT is a combination of monolithic tablets, all of which must have good mechanical properties. Unlike monolithic tablets, the interfacial adhesion of MLTs significantly impacts their quality. Therefore, the excipients and their mixtures in an MLT must be evaluated for a variety of physical properties. Additionally, evaluation methods that measure interfacial adhesion can ensure the quality of MLTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abebe A, Akseli I, Sprockel O, Kottala N, Cuitiño AM (2014) Review of bilayer tablet technology. Int J Pharm 461 1:549–558

    Article  Google Scholar 

  • Akseli I, Dey D, Cetinkaya C (2010) Mechanical property characterization of bilayered tablets using nondestructive air-coupled acoustics. AAPS PharmSciTech 11 1:90–102

    Article  Google Scholar 

  • Akseli I, Abebe A, Sprockel O, Sprockel O, Cuitiño A (2013) Mechanistic characterization of bilayer tablet formulations. Powder Technol 236:30–36

    Article  CAS  Google Scholar 

  • Alderborn G, Duberg M, Nyström C (1985) Studies on direct compression of tablets X. Measurement of tablet surface area by permeametry. Powder Technol 41 1:49–56

    Article  Google Scholar 

  • Aryal S, Škalko-Basnet N (2008) Stability of amlodipine besylate and atenolol in multi-component tablets of mono-layer and bi-layer types. Acta Pharm 58 3:299–308

    Google Scholar 

  • Augsburger LL, Hoag SW (2008) Pharmaceutical Dosage forms: tablets. Informa Healthcare, New York

    Book  Google Scholar 

  • Bangalore S, Kamalakkannan G, Parkar S, Messerli FH (2007) Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med 120 8:713–719

    Article  Google Scholar 

  • Barba AA, Cascone S, Caccavo D, Lamberti G, Chiarappa G, Abrami M, Grassi G, Grassi M, Tomaiuolo G, Guido S, Brucato V, Carfì Pavia F, Ghersi G, La Carrubba V, Abbiati RA, Manca D (2017) Engineering approaches in siRNA delivery. Int J Pharm 525 2:343–358

    Article  Google Scholar 

  • Bellini M (2018) Manufacturing of single and multilayer tablets: influence of material properties and process parameters on die filling and layer adhesion. Doctoral dissertation, Freie Universität Berlin, Berlin

  • Bellini M, Walther M, Bodmeier R (2019) Evaluation of manufacturing process parameters causing multilayer tablets delamination. Int J Pharm 570 8:118607

    Article  Google Scholar 

  • Blattner D, Kolb M, Leuenberger H (1990) Percolation theory and compactibility of binary powder systems. Pharm Res 7 2:113–117

    Article  Google Scholar 

  • Brenne JF, Calligaris F, Daste G, Edeline-Berlemont J, Fontaine N (2015) Pharmaceutical tablet comprising acetylsalicylic acid and clopidogrel, vol 2015014766. PCT Patent No. WO, p A2015014761

  • Busignies V, Mazel V, Diarra H, Tchoreloff P, Cao Q-R, Choi H-G, Kim D-C, Lee B-J (2004) Release behavior and photo-image of nifedipine tablet coated with high viscosity grade hydroxypropylmethylcellulose: effect of coating conditions. Int J Pharm 274(1):107–117

    Google Scholar 

  • Cao Q-R, Choi H-G, Kim D-C, Lee B-J (2004) Release behavior and photo-image of nifedipine tablet coated with high viscosity grade hydroxypropylmethylcellulose: effect of coating conditions. Int J Pharm 274(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Castrati L, Mazel V, Busignies V, Diarra V, Rossi A, Colombo P, Tchoreloff P (2016) Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets. Int J Pharm 513 1:709–716

    Article  Google Scholar 

  • Çelik M (2011) Pharmaceutical Powder Compaction Technology. Informa Healthcare, New York

    Google Scholar 

  • Çelik M, Aulton ME (1996) The viscoelastic deformation of some tableting materials as assessed by indentation rheology. Drug Dev Ind Pharm 22 1:67–75

    Article  Google Scholar 

  • Chang S-Y, Sun CC (2019) Insights into the effect of compaction pressure and material properties on interfacial bonding strength of bilayer tablets. Powder Technol 354 1:867–876

    Article  Google Scholar 

  • Cheong C, Barner JC, Lawson KA, Johnsrud MT (2008) Patient adherence and reimbursement amount for antidiabetic fixed-dose combination products compared with dual therapy among Texas Medicaid recipients. Clin Ther 30 10:1893–1907

    Article  Google Scholar 

  • Collier R (2013) Drug patents: the evergreening problem. Can Med Assoc

  • Connor J, Rafter N, Rodgers A (2004) Do fixed-dose combination pills or unit-of-use packaging improve adherence? A systematic review. Bull World Health Organ 82 12:935–939

    Google Scholar 

  • Crommelin DJ, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454 1:496–511

    Article  Google Scholar 

  • Demiri V, Stranzinger S, Rinner P, Piller M, Sacher S, Lingitz J, Khinast J, Salar-Behzadi S (2018) Gluing Pills Technology: a novel route to multilayer tablet manufacturing. Int J Pharm 548(1):672–681

    Article  CAS  PubMed  Google Scholar 

  • Desai D, Wang J, Wen H, Li X, Timmins P (2013) Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm Dev Technol 18 6:1265–1276

    Article  Google Scholar 

  • Dietrich P, Bauer-Brandl A, Schubert R (2000) Influence of tableting forces and lubricant concentration on the adhesion strength in complex layer tablets. Drug Dev Ind Pharm 26 7:745–754

    Article  Google Scholar 

  • DiPette D, Skeete J, Ridley E, Campbell N, Lopez-Jaramillo P, Kishore S, Jaffe M, Coca A, Townsend R, Ordunez P (2019) Fixed‐dose combination pharmacologic therapy to improve hypertension control worldwide: clinical perspective and policy implications. J Clin Hypertens 21 1:4–15

    Article  Google Scholar 

  • Efentakis M, Peponaki C (2008) Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on carbopols with isosorbite mononitrate. AAPS PharmSciTech 9 3:917–923

    Article  Google Scholar 

  • Eisenächer F, Garbacz G, Mäder K (2014) Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets. Eur J Pharm Biopharm 88 3:778–786

    Article  Google Scholar 

  • Elvin JG, Couston RG, van der Walle CF (2013) Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharm 440 1:83–98

    Article  Google Scholar 

  • Fallowfield L, Atkins L, Catt S, Cox A, Coxon C, Langridge C, Morris R, Price M (2005) Patients’ preference for administration of endocrine treatments by injection or tablets: results from a study of women with breast cancer. Ann Oncol 17:205–210

    Article  PubMed  Google Scholar 

  • Fell J, Newton J (1970) Determination of tablet strength by the diametral-compression test. J Pharm Sci 59 5:688–691

    Article  Google Scholar 

  • Franck J, Abebe A, Keluskar R, Martin K, Majumdar A, Kottala N, Stamato H (2013) Axial strength test for round flat faced versus capsule shaped bilayer tablets. Drug Dev Ind Pharm 20 2:139–145

    Google Scholar 

  • Fu Q, Su X, Hou Y, Li M, Li J, Sun J, He Z (2016) Once-daily Amoxicillin immediate-and extended-release bilayer tablets. Powder Technol 301:405–411

    Article  CAS  Google Scholar 

  • Garr J, Rubinstein M (1991) The effect of rate of force application on the properties of microcrystalline cellulose and dibasic calcium phosphate mixtures. Int J Pharm 73 1:75–80

    Article  Google Scholar 

  • Ghimire M, Hodges LA, Band J, O’mahony B, McInnes FJ, Mullen AB, Stevens HN (2010) In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. J Control Release 147 1:70–75

    Article  Google Scholar 

  • Gong X, Sun CC (2015) A new tablet brittleness index. Eur J Pharm Biopharm 93:260–266

    Article  CAS  PubMed  Google Scholar 

  • Granberry MC, Gardner SF, Schneider EF, Carter IR (1996) Comparison of two formulations of Nifedipine during 24-Hour ambulatory blood pressure monitoring. 16 5:932–936

  • Hancock BC, Colvin JT, Mullarney MP, Zinchuk AV (2003) The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablets. Pharm Technol 27:64–80

    CAS  Google Scholar 

  • Heckel R (1961) Density-pressure relationships in powder compaction. Trans Metall Soc AIME 221 4:671–675

    Google Scholar 

  • Hersey J, Rees J (1971) Deformation of particles during briquetting. Nature 230 12:96–96

    Google Scholar 

  • Herting MG, Kleinebudde P (2008) Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. Eur J Pharm Biopharm 70:372–379

    Article  CAS  PubMed  Google Scholar 

  • Hiestand H, Smith DP (1984) Indices of tableting performance. Powder Technol 38 2:145–159

    Article  Google Scholar 

  • Hiestand E, Wells J, Peot C, Ochs J (1977) Physical processes of tableting. J Pharm Sci 66 4:510–519

    Article  Google Scholar 

  • Hwang K-M, Cho C-H, Tung N-T, Kim J-Y, Rhee Y-S, Park E-S (2017) Release kinetics of highly porous floating tablets containing cilostazol. Eur J Pharm Biopharm 115:39–51

    Article  CAS  PubMed  Google Scholar 

  • Igne B, Anderson CA et al (2011) Radial tensile strength prediction of relaxing and relaxed compacts by near-infrared chemical imaging. Int J Pharm 418(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Ijaz H, Qureshi J, Danish Z, Zaman M, Abdel-Daim M, Bashir I (2017) Design and evaluation of Bilayer Matrix Tablet of Metoprolol tartrate and Lisinopril Maleate. Adv Polym Tech 36 2:152–159

    Article  Google Scholar 

  • Ilkka J, Paronen P (1993) Prediction of the compression behaviour of powder mixtures by the Heckel equation. Int J Pharm 94(1–3):181–187

    Article  CAS  Google Scholar 

  • Inman S, Briscoe B, Pitt K (2007) Topographic characterization of cellulose bilayered tablets interfaces. Chem Eng Res Des 85 7:1005–1012

    Article  Google Scholar 

  • Jain S (1999) Mechanical properties of powders for compaction and tableting: an overview. Pharm Sci Technol Today 2 1:20–31

    Article  Google Scholar 

  • Järvinen M, Juslin M (1981) Comments on evaluation of force—displacement measurements during one-sided powder compaction in a die; the influence of friction with die wall and of the diameter of punches and die on upper and lower punch pressure. Powder Technol 28 1:115

    Article  Google Scholar 

  • Joiris E, Di Martino P, Berneron C, Guyot-Hermann A-M, Guyot J-C (1998) Compression behavior of orthorhombic Paracetamol. Pharm Res 15 7:1122–1130

    Article  Google Scholar 

  • Kauss T, Fawaz F, Guyot M, Lagueny A-M, Dos Santos I, Bonini F, Olliaro P, Caminiti A, Millet P (2010) Fixed artesunate–amodiaquine combined pre-formulation study for the treatment of malaria. Int J Pharm 395 1:198–204

    Article  Google Scholar 

  • Kawakita K, Lüdde K-H (1971) Some considerations on powder compression equations. Powder Technol 4 2:61–68

    Article  Google Scholar 

  • Kim J-Y, Kim D-W, Kuk Y-M, Park C-W, Rhee Y-S, Oh T-O, Weon K-Y, Park E-S (2012) Investigation of an active film coating to prepare new fixed-dose combination tablets for treatment of diabetes. Int J Pharm 427 2:201–208

    Article  Google Scholar 

  • Kleinebudde P (2004) Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm 58 2:317–326

    Article  Google Scholar 

  • Kottala N, Abebe A, Sprockel O, Bergum J, Nikfar F, Cuitiño AM (2012) Evaluation of the performance characteristics of bilayer tablets: Part I. Impact of material properties and process parameters on the strength of bilayer tablets. Aaps Pharmscitech 13:1236–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaiah Y, Karthikeyan R, Sankar VG, Satyanarayana V (2002) Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release 81 1:45–56

    Article  Google Scholar 

  • Kuentz M, Leuenberger H (1999) Pressure susceptibility of polymer tablets as a critical property: a modified Heckel equation. J Pharm Sci 88 2:174–179

    Article  Google Scholar 

  • Kuentz M, Leuenberger H (2000) A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. Eur J Pharm Biopharm 49 2:151–159

    Article  Google Scholar 

  • Kulkarni A, Bhatia M (2010) Development and evaluation of regioselective bilayer floating tablets of Atenolol and Lovastatin for biphasic release profile. Iran J Pharm Res 15–25

  • Lakes RS (2009) Viscoelastic materials. Cambridge University Press, New York

    Book  Google Scholar 

  • Lammens R, Liem T, De Blaey C (1980) Evaluation of force—displacement measurements during one-sided powder compaction in a die—the influence of friction with the die wall and of the diameter of punches and die on upper and lower punch pressure. Powder Technol 26:169–185

    Article  Google Scholar 

  • Lawrence XY (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25:781–791

    Article  Google Scholar 

  • Lende Lalita K, Banerjee S, Gadhave M, Gaikwad D, Gaykar A (2013) Review on: Bilayer floating Tablet. 1 1:31–39

  • Leuenberger H, Leu R (1992) Formation of a tablet: a site and bond percolation phenomenon. J Pharm Sci 81 10:976–982

    Article  Google Scholar 

  • Leuenberger H, Rohera BD (1986) Fundamentals of powder compression. I. The compactibility and compressibility of pharmaceutical powders. Pharm Res 3 1:12–22

    Article  Google Scholar 

  • Li SP, Karth MG, Feld KM, Di Paolo LC, Pendharkar CM, Williams RO (1995) Evaluation of bilayer tablet machines—a case study. Drug Dev Ind Pharm 21 5:571–590

    Article  Google Scholar 

  • Liu Q, Fassihi R (2008) Zero-order delivery of a highly soluble, low dose drug alfuzosin hydrochloride via gastro-retentive system. Int J Pharm 348 1:27–34

    Article  Google Scholar 

  • Liu L, Xu X (2008) Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet. Int J Pharm 352 1:225–230

    Article  Google Scholar 

  • Maggi L, Segale L, Conti S, Ochoa Machiste E, Salini A, Conte U (2005) Preparation and evaluation of release characteristics of 3TabGum, a novel chewing device. Eur J Pharm Sci 24 5:487–493

    Article  Google Scholar 

  • Malaterre V, Metz H, Ogorka J, Gurny R, Loggia N, Mäder K (2009a) Benchtop-magnetic resonance imaging (BT-MRI) characterization of push–pull osmotic controlled release systems. J Control Release 133 1:31–36

    Article  Google Scholar 

  • Malekzadeh F, Marshall T, Pourshams A, Gharravi M, Aslani A, Nateghi A, Rastegarpanah M, Khoshnia M, Semnani S, Salahi R (2010) A pilot double-blind randomised placebo‐controlled trial of the effects of fixed‐dose combination therapy (‘polypill’) on cardiovascular risk factors. Int J Clin Pract 64 9:1220–1227

    Article  Google Scholar 

  • Malkowska S, Khan K (1983) Effect of re-conpression on the properties of tablets prepared by dry granulation. Drug Develop Ind Pharm 9:331–347

    Article  CAS  Google Scholar 

  • Mandal U, Pal TK (2008) Formulation and in vitro studies of a fixed-dose combination of a bilayer matrix tablet containing metformin HCl as sustained release and glipizide as immediate release. Drug Dev Ind Pharm 34 3:305–313

    Article  Google Scholar 

  • Mason LM, Campiñez MD, Pygall SR, Burley JC, Gupta P, Storey DE, Caraballo I, Melia CD (2015) The influence of polymer content on early gel-layer formation in HPMC matrices: the use of CLSM visualisation to identify the percolation threshold. Eur J Pharm Biopharm 94:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mazel V, Busignies V, Diarra H, Tchoreloff P (2012) Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator. J Pharm Sci 101 6:2220–2228

    Article  Google Scholar 

  • Narendra C, Srinath M, Rao BP (2005) Development of three layered buccal compact containing metoprolol tartrate by statistical optimization technique. Int J Pharm 304 1:102–114

    Article  Google Scholar 

  • Nguyen T-T, Park H-R, Cho C-H, Hwang K-M, Park E-S (2020) Investigation of critical factors affecting mechanical characteristics of press-coated tablets using a compaction simulator. Int J Pharm 582 1:119308

    Article  Google Scholar 

  • Niwa M, Hiraishi Y, Iwasaki N, Terada T (2013) Quantitative analysis of the layer separation risk in bilayer tablets using terahertz pulsed imaging. Int J Pharm 452(1–2):249–256

    Article  CAS  PubMed  Google Scholar 

  • O’brien DP, Sauvageot D, Zachariah R, Humblet P (2006) In resource-limited settings good early outcomes can be achieved in children using adult fixed-dose combination antiretroviral therapy. Aids 20 15:1955–1960

    Article  Google Scholar 

  • Osei-Yeboah F, Zhang M, Feng Y, Sun CC (2014) A formulation strategy for solving the overgranulation problem in high shear wet granulation. J Pharm Sci 103 8:2434–2440

    Article  Google Scholar 

  • Pan F, Chernew ME, Fendrick AM (2008) Impact of fixed-dose combination drugs on adherence to prescription medications. J Gen Intern Med 23 5:611–614

    Article  Google Scholar 

  • Papós K, Kása P Jr, Ilič I, Blatnik-Urek S, Regdon S Jr, Srčič S, Pintye-Hódi K, Sovány T (2015) Effect of the surface free energy of materials on the lamination tendency of bilayer tablets. Int J Pharm 496 2:609–613

    Article  Google Scholar 

  • Patel VM, Prajapati BG, Patel HV, Patel KM (2007) Mucoadhesive bilayer tablets of propranolol hydrochloride. AAPS PharmSciTech 8(3):E203–E208

    Article  PubMed Central  Google Scholar 

  • Patel A, Mehta T, Patel M, Patel K, Patel N (2013) Recent patent in controlled porosity osmotic pump. Recent Pat Drug Deliv Formul 7 1:66–72

    Article  Google Scholar 

  • Phaechamud T (2008) Variables influencing drug release from layered matrix system comprising hydroxypropyl methylcellulose. AAPS PharmSciTech 9 2:668–674

    Article  Google Scholar 

  • Podczeck F (2011) Theoretical and experimental investigations into the delamination tendencies of bilayer tablets. Int J Pharm 408 1:102–112

    Article  Google Scholar 

  • Podczeck F, Al-Muti E (2010) The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose. Eur J Pharm Sci 41 3:483–488

    Article  Google Scholar 

  • Podczeck F, Drake KR, Newton JM, Haririan I (2006) The strength of bilayered tablets. Eur J Pharm Sci 29 5:361–366

    Article  Google Scholar 

  • Ramı́rez N, Melgoza LM, a, Kuentz M, Sandoval H, Caraballo I (2004) Comparison of different mathematical models for the tensile strength–relative density profiles of binary tablets. Eur J Pharm Sci 22 1:19–23

    Article  Google Scholar 

  • Ranade AN, Wankhede SS, Ranpise NS, Mundada MS (2012) Development of bilayer floating tablet of Amoxicillin and Aloe vera gel powder for treatment of gastric ulcers. AAPS PharmSciTech 13 4:1518–1523

    Article  Google Scholar 

  • Roberts R, Rowe R (1985) The effect of punch velocity on the compaction of a variety of materials. J Pharm Pharmacol 37 6:377–384

    Google Scholar 

  • Rumpf H (1958) Basic principles and methods of granulation. I II Chem Ing Tech 30:144–158

    Article  CAS  Google Scholar 

  • Ryshkewitch E (1953) Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc 36 2:65–68

    Article  Google Scholar 

  • Schneider L, Sinka I, Cocks A (2007) Characterisation of the flow behaviour of pharmaceutical powders using a model die–shoe filling system. Powder Technol 173 1:59–71

    Article  Google Scholar 

  • Shi L, Feng Y, Sun CC (2010) Roles of granule size in over-granulation during high shear wet granulation. J Pharm Sci 99 8:3322–3325

    Article  Google Scholar 

  • Simão J, Chaudhary SA, Ribeiro AJ (2023) Implementation of quality by design (QbD) for development of bilayer tablets. Eur J Pharm Sci 184 1:106412

    Article  Google Scholar 

  • Sonnergaard J (1999) A critical evaluation of the Heckel equation. Int J Pharm 193 1:63–71

    Article  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Polymer networks. Springer, pp 103–158

  • Sugisawa K, Kaneko T, Sago T, Sato T (2009) Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: method development and application in product manufacturing. J Pharm Biomed Anal 49 3:858–861

    Article  Google Scholar 

  • Sun CC (2008) On the mechanism of reduced tabletability of granules prepared by roller compaction. Int J Pharm 347 1:171–172

    Article  Google Scholar 

  • Sun C, Grant DJ (2001) Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res 18 3:274–280

    Article  Google Scholar 

  • Tao j, Robertson-Lavalle S, Pandey P, Badawy S (2017) Understanding the delamination risk of a trilayer tablet using minipiloting tools interfacial strength of bilayer pharmaceutical tablets. J Pharm Sci 106 11:3346–3352

    Article  Google Scholar 

  • Tye CK, Sun CC, Amidon GE (2005) Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci 94 3:465–472

    Article  Google Scholar 

  • Vaithiyalingam SR, Sayeed VA (2010) Critical factors in manufacturing multi-layer tablets—assessing material attributes, in-process controls, manufacturing process and product performance. Int J Pharm 398 1:9–13

    Article  Google Scholar 

  • Venkatesh GM, Coleman JAN, Wrzosek TJ, Duddu S, Palepu NR, Bandyopadhyay R, Grant DJ (1998) Fractional factorial designs for optimizing experimental conditions for Hiestand’s indices of tableting performance. Powder Technol 97 2:151–159

    Article  Google Scholar 

  • Walker E (1923) The properties of powders. Part VI. The compressibility of powders. Trans Faraday Soc 19:73–82

    Article  Google Scholar 

  • Wang X, Cui F, Yonezawa Y, Sunada H (2003) Preparation and evaluation of combination tablet containing incompatible active ingredients. Chem Pharm Bull 51 7:772–778

    Article  Google Scholar 

  • Wang J, Trinkle D, Derbin G, Martin K, Sharif S, Timmins P, Desa D (2016) Moisture adsorption and desorption properties of colloidal silicon dioxide and its impact on layer adhesion of a bilayer tablet formulation. J Excip Food Chem 5 1:21–31

    Google Scholar 

  • Weber MA, Schifrin EL, White WB, Mann S, Lindholm LH et al (2014) Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens 32:3–15

    Article  CAS  PubMed  Google Scholar 

  • Wu C-Y, Seville JP (2009) A comparative study of compaction properties of binary and bilayer tablets. Powder Technol 189 2:285–294

    Article  Google Scholar 

  • Wu C-Y, Best SM, Bentham AC, Hancock BC, Bonfield W (2006) Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders. Pharm Res 23 8:1898–1905

    Article  Google Scholar 

  • Wu B, Shun N, Wei X, Wu W (2007) Characterization of 5-fluorouracil release from hydroxypropylmethylcellulose compression-coated tablets. Pharm Develop Technol  12:203–210

    Article  CAS  Google Scholar 

  • Wurster DE, Majuru S, Oh E (1999) Prediction of the Hiestand bonding indices of binary powder mixtures from single-component bonding indices. Pharm Dev Technol 4 1:65–70

    Article  Google Scholar 

  • Yedurkar P, Dhiman MK, Petkar K, Sawant K (2012) Mucoadhesive bilayer buccal tablet of carvedilol-loaded chitosan microspheres: in vitro, pharmacokinetic and pharmacodynamic investigations. J Microencapsul 29 2:126–137

    Article  Google Scholar 

  • Yohannes B, Gonzalez M, Abebe A, Sprocke O, Nikfar F, Kiang S, Cuitiño AM (2017) Discrete particle modeling and micromechanical characterization of bilayer tablet compaction. Int J Pharm 529 1:597–607

    Article  Google Scholar 

  • Yoo YH, Kim HH, Lee JW, Park JW, Jang BS (2000) Orally administrable pharmaceutical preparation having therapeutic effect on gastrointestinal disorders comprising coated ranitidine, bismuth subcitrate and sucralfate: PCT Patent No. WO2000078307 A2000078301

  • Zecca E, Brunelli C, Centurioni F, Manzoni A, Pigni A, Caraceni A (2017) Fentanyl sublingual tablets versus subcutaneous morphine for the management of severe cancer pain episodes in patients receiving opioid treatment: a double-blind, randomized, noninferiority trial. J Clin Oncol  35:759–765

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu C-Y, Storey D, Byrne G (2018) Interfacial strength of bilayer pharmaceutical tablets. Powder Technol 337 1:36–42

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2021R1I1A3056811) and the Technology Innovation Program (RS-2023-00235054) funded by the Ministry of Trade, Industry, and Energy (MOTIE, KOREA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju-Young Kim or Eun-Seok Park.

Ethics declarations

Conflict of interest

All authors (K M Hwang, C H Cho, S H Lee, J Y Kim, E S Park) declare that they have no conflict of interest.

Research involving human or animal participants

This article does not contain any studies with human and animal subjects performed by any of the authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, KM., Cho, CH., Lee, SH. et al. Preformulation and evaluation of multi-layer tablets. J. Pharm. Investig. 54, 161–174 (2024). https://doi.org/10.1007/s40005-024-00673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-024-00673-y

Keywords

Navigation