Skip to main content
Log in

Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Machine learning (ML) tools have become invaluable in potential drug candidate screening, formulation development, manufacturing, and characterization of advanced drug delivery systems. These tools are part of the Industry 4.0 revolution, which plays a vital role in microparticle and microfluidics, alongside mRNA-LNP vaccines, and stability in advanced protein therapeutics.

Area covered

This study summarizes the application of ML tools in drug discovery, formulation development, and optimization, in addition to continuous manufacturing and characterization of advanced drug delivery systems such as biopharmaceutical formulations including mRNA-LNP vaccines, microfluidics, and microparticle dosage forms. Furthermore, it includes stability concerns, and regulatory, technical, and ethical issues along with future perspectives.

Expert opinion

ML tools are essential for revolutionizing the drug development cycle, where it has been implemented to screen vast databases for drug discovery, optimize formulations, adopt Industry 4.0, and continuous manufacturing concepts, including characterizing and predicting the stability of biopharmaceuticals. However, a gap between regulatory authorities and industries is felt due to current ethical and technical issues in the drug approval process. The vast available databases can be used to train the ML models and such pre-trained ML models can address these concerns. Additionally, these pre-trained tools can predict stability, meaning that the optimization of the formulation is possible, which can save lots of time, efforts, and costs. Moreover, a multidisciplinary approach between ML tools and the drug delivery system promotes digital twin, which can lead to improved patient compliance and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  • Acharjee A, Larkman J, Xu Y, Cardoso VR, Gkoutos GV (2020) A random forest based biomarker discovery and power analysis framework for diagnostics research. BMC Med Genom 13:1–14

    Article  Google Scholar 

  • Ahn JC, Connell A, Simonetto DA, Hughes C, Shah VH (2021) Application of artificial intelligence for the diagnosis and treatment of liver diseases. Hepatology 73:2546–2563

    Article  PubMed  Google Scholar 

  • Alalaween WH, Mahfouf M, Salman AD (2016) Predictive modelling of the granulation process using a systems-engineering approach. Powder Technol 302:265–274

    Article  CAS  Google Scholar 

  • Angello NH, Rathore V, Beker W, Wołos A, Jira ER, Roszak R, Wu TC, Schroeder CM, Aspuru-Guzik A, Grzybowski BA (2022) Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378:399–405

    Article  CAS  PubMed  Google Scholar 

  • Arano-Martinez JA, Martínez-González CL, Salazar MI, Torres-Torres C (2022) A framework for biosensors assisted by multiphoton effects and machine learning. Biosensors 12:710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arden NS, Fisher AC, Tyner K, Lawrence XY, Lee SL, Kopcha M (2021) Industry 4.0 for pharmaceutical manufacturing: preparing for the smart factories of the future. Int J Pharm 602:120554

    Article  CAS  PubMed  Google Scholar 

  • Banerjee D, Rajput D, Banerjee S, Saharan VA (2022) Artificial intelligence and its applications in drug discovery, formulation development, and healthcare. In: Saharan VA (ed) Computer aided pharmaceutics and drug delivery An application guide for students and researchers of pharmaceutical sciences. Springer, Singapore

    Google Scholar 

  • Bannigan P, Aldeghi M, Bao Z, Häse F, Aspuru-Guzik A, Allen C (2021) Machine learning directed drug formulation development. Adv Drug Deliv Rev 175:113806

    Article  CAS  PubMed  Google Scholar 

  • Bellocchio F, Gervasoni F, Rosenberger J, Usvayt L, Cioffi M, Garbelli M, Sagova M, Nikam M, Jirka T, Stuard S (2023) Development and usability assessment of an AI-enhanced dashboard supporting AVF management in clinical practice. Nephrol Dial Transpl 38:gfad063c_3226

    Article  Google Scholar 

  • Bevers S, Kooijmans SA, Van De Velde E, Evers MJ, Seghers S, Gitz-Francois JJ, Van Kronenburg NC, Fens MH, Mastrobattista E, Hassler L (2022) mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol Ther 30:3078–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biopharmatrend (2023) AI drug discovery: key trends and developments in pharmaceutical industry, https://www.biopharmatrend.com/post/615-pharmaceutical-artificial-intelligence-key-developments-in-2022. Accessed 12 July 2023

  • Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, Papadopoulos K, Patronov A (2020) Reinvent 2.0: an AI tool for de novo drug design. J Chem Inf Model 60:5918–5922

    Article  CAS  PubMed  Google Scholar 

  • Blenke EO, Örnskov E, Schöneich C, Nilsson G, Volkin DB, Mastrobattista E, Almarsson Ö, Crommelin DJ (2022) The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case. J Pharm Sci 112:386–403

    Article  Google Scholar 

  • Brenner JS, Mitragotri S, Muzykantov VR (2021) Red blood cell hitchhiking: a novel approach for vascular delivery of nanocarriers. Annu Rev Biomed Eng 23:225–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Lu C, Xu J, Meng Y, Wang P, Fu X, Zeng X, Su Y (2021) Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief 22:bbab319

    Article  Google Scholar 

  • Carpenter KA, Huang X (2018) Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: a review. Curr Pharm Des 24:3347–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A (2022) Challenges and opportunities of implementing data fusion in process analytical technology-a review. Molecules 27:4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Hair SM, Seelig G (2021) Machine learning for designing next-generation mRNA therapeutics. Acc Chem Res 55:24–34

    Article  PubMed  Google Scholar 

  • Chan HS, Shan H, Dahoun T, Vogel H, Yuan S (2019) Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 40:592–604

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Muthudoss P, Madheswaran T, Paudel A, Gaikwad V (2023) Chapter 15 - Artificial intelligence (AI) in drug product designing, development, and manufacturing. In: Philip A, Shahiwala A, Rashid M, Faiyazuddin Md (eds) A handbook of artificial intelligence in drug delivery. Academic Press, Cambridge, pp 395–442

    Chapter  Google Scholar 

  • Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Discov Today 23:1241–1250

    Article  PubMed  Google Scholar 

  • Chen P, Ansari MJ, Bokov D, Suksatan W, Rahman ML, Sarjadi MS (2022) A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations. Arab J Chem 15:103598

    Article  CAS  Google Scholar 

  • Chokshi N, Chakraborty S (2023) Chapter 22 - Artificial intelligence from a regulatory perspective: drug delivery and devices. In: Philip A, Shahiwala A, Rashid M, Faiyazuddin Md (eds) A handbook of artificial intelligence in drug delivery. Academic Press, Cambridge, pp 581–607

    Chapter  Google Scholar 

  • Cocos A, Fiks AG, Masino AJ (2017) Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in twitter posts. J Am Med Inform Assoc 24:813–821

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen IG, Evgeniou T, Gerke S, Minssen T (2020) The European artificial intelligence strategy: implications and challenges for digital health. Lancet 2:e376–e379

    Google Scholar 

  • Damiati SA (2020) Digital pharmaceutical sciences. AAPS PharmSciTech 21:206

    Article  PubMed  Google Scholar 

  • Daniel S, Kis Z, Kontoravdi C, Shah N (2022) Quality by Design for enabling RNA platform production processes. Trends Biotechnol 40:1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Daniels MJ, Linero A, Roy J (2023) Bayesian nonparametrics for causal inference and missing data, vol 124. CRC Press, Boca Raton

    Book  Google Scholar 

  • Deng Z, Zuo X (2023) Distributed online learning algorithm for noncooperative games over unbalanced digraphs. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3290049

    Article  PubMed  Google Scholar 

  • Deo RC (2015) Machine Learning in Medicine. Circulation 132:1920–1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Deon M, Dos Santos J, De Andrade DF, Beck RCR (2022) A critical review of traditional and advanced characterisation tools to drive formulators towards the rational development of 3D printed oral dosage forms. Int J Pharm 628:122293

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Yang T, Xing Y, Du J, Meng Q (2023) Data-driven modeling methods and techniques for pharmaceutical processes. Processes 11:2096

    Article  Google Scholar 

  • Durga Prasad Reddy R, Sharma V (2020) Additive manufacturing in drug delivery applications: A review. Int J Pharm 589:119820

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P (2015) Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 4:1–15

    Article  Google Scholar 

  • Fahle S, Prinz C, Kuhlenkötter B (2020) Systematic review on machine learning (ML) methods for manufacturing processes – Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 93:413–418

    Article  Google Scholar 

  • Fei J, Yong J, Hui Z, Yi D, Hao L, Sufeng M, Yilong W, Qiang D, Haipeng S, Yongjun W (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2:230

    Article  Google Scholar 

  • Generative A (2023) First drug discovered and designed with generative AI enters Phase II trials, with first patients dosed, https://www.genengnews.com/topics/artificial-intelligence/insilicos-ai-candidate-for-ipf-doses-first-patient-in-phase-ii. Accessed 07 July 2023

  • Gentile F, Yaacoub JC, Gleave J, Fernandez M, Ton A-T, Ban F, Stern A, Cherkasov A (2022) Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17:672–697

    Article  CAS  PubMed  Google Scholar 

  • Gentiluomo L, Roessner D, Frieß W (2020) Application of machine learning to predict monomer retention of therapeutic proteins after long term storage. Int J Pharm 577:119039

    Article  CAS  PubMed  Google Scholar 

  • Gudeppu M, Balasubramanian J, Bakthavachalam P, Chokkalingam L, Shanmugam PST (2020) Biocompatibility and toxicology. Trends Med. https://doi.org/10.1016/B978-0-12-820960-8.00007-1

    Article  Google Scholar 

  • Hahn S-J, Kim S, Choi YS, Lee J, Kang J (2022) Prediction of type 2 diabetes using genome-wide polygenic risk score and metabolic profiles: a machine learning analysis of population-based 10-year prospective cohort study. EBioMedicine 86:1–12

    Article  Google Scholar 

  • Hariry RE, Barenji RV, Paradkar A (2020) From Industry 4.0 to Pharma 4.0 In: Chaudhery Mustansar Hussain & Paolo Di Sia (eds) Handbook of smart materials, technologies, and devices, Springer, Cham

  • Harrer S, Shah P, Antony B, Hu J (2019) Artificial intelligence for clinical trial design. Trends Pharmacol Sci 40:577–591

    Article  CAS  PubMed  Google Scholar 

  • Haywood AL, Redshaw J, Hanson-Heine MW, Taylor A, Brown A, Mason AM, GäRtner T, Hirst JD (2021) Kernel methods for predicting yields of chemical reactions. J Chem Inf Model 62:2077–2092

    Article  PubMed  Google Scholar 

  • Helaimia R (2023) Cloud computing in higher education institutions: pros and cons. Int J Adv Eng Res Sci 7:132–141

    Google Scholar 

  • Helleckes LM, Hemmerich J, Wiechert W, Von Lieres E, Grünberger A (2022) Machine learning in bioprocess development: from promise to practice. Trends Biotechnol 41:817–835

    Article  PubMed  Google Scholar 

  • Hu J, Li W, Zheng X, Tian Z, Zhang Y (2023) Prior knowledge-based residuals shrinkage prototype networks for cross-domain fault diagnosis. Meas Sci Technol 34:105011

    Article  Google Scholar 

  • Ingle RG, Fang W-J (2021) Prefilled dual chamber devices (DCDs)–promising high-quality and convenient drug delivery system. Int J Pharm 597:120314

    Article  CAS  PubMed  Google Scholar 

  • Ismail HY, Singh M, Darwish S, Kuhs M, Shirazian S, Croker DM, Khraisheh M, Albadarin AB, Walker GM (2019) Developing ANN-kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol 343:568–577

    Article  CAS  Google Scholar 

  • Ismail HY, Singh M, Shirazian S, Albadarin AB, Walker GM (2020) Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation. Chem Eng Res Des 163:320–326

    Article  CAS  Google Scholar 

  • Ivanenkov YA, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V, Kamya P, Aliper A, Ren F, Zhavoronkov A (2023) Chemistry42: an AI-driven platform for molecular design and optimization. J Chem Inf Model 63:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal S, Khubaib M, Gangwar R, Grover S, Grover A, Hasnain SE (2020) Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Sci Rep 10:5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan Z, Ahamed F, Mayer W, Patel N, Grossmann G, Stumptner M, Kuusk A (2023) Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst Appl 216:119456

    Article  Google Scholar 

  • Jang HY, Song J, Kim JH, Lee H, Kim I-W, Moon B, Oh JM (2022) Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit Med 5:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Jariwala N, Putta CL, Gatade K, Umarji M, Ruhina Rahman SN, Pawde DM, Sree A, Kamble AS, Goswami A, Chakraborty P, Shunmugaperumal T (2023) Intriguing of pharmaceutical product development processes with the help of artificial intelligence and deep/machine learning or artificial neural network. J Drug Deliv Sci 87:104751

    Google Scholar 

  • Ji Y, Gao Y, Bao R, Li Q, Liu D, Sun Y, Ye Y (2023) Prediction of COVID-19 patients' emergency room revisit using multi-source transfer learning. arXiv 2306:17257

  • Jiang Z, Rieck C, Bück A, Tsotsas E (2020) Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach. Chem Eng Sci 211:115289

    Article  CAS  Google Scholar 

  • Jyothi VGSS, Bulusu R, Rao BVK, Pranothi M, Banda S, Bolla PK, Kommineni N (2022) Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int J Pharm 624:122022

    Article  Google Scholar 

  • Kamran SA (2023) Deep representation learning with limited data for biomedical image synthesis, segmentation, and detection, Dissertation, University of Nevada

  • Kaplun D, Bogachev MI, Singh DPK, Sarkar R (2023) Bringing together data-and knowledge-driven solutions for a better understanding and effective diagnostics of neurological disorders. Front Neuroinform 17:1229945

    Article  PubMed  PubMed Central  Google Scholar 

  • Karl AT, Essex S, Wisnowski J, Rushing H, Adsurgo L (2022) A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization Using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM). arXiv:11264

  • Kejzlar V, Hu J (2023) Introducing variational inference in statistics and data science curriculum. Am Stat. https://doi.org/10.1080/00031305.2023.2232006

    Article  Google Scholar 

  • Khanal SK, Tarafdar A, You S (2023) Artificial intelligence and machine learning for smart bioprocesses. Bioresour Technol 375:128826

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Duigou T, Faulon J-L (2019) Reinforcement learning for bioretrosynthesis. ACS Synth Biol 9:157–168

    Article  PubMed  Google Scholar 

  • Kolluri S, Lin J, Liu R, Zhang Y, Zhang W (2022) Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J 24:19

    Article  PubMed  Google Scholar 

  • Kon E, Elia U, Peer D (2022) Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol 73:329–336

    Article  CAS  PubMed  Google Scholar 

  • Koromina M, Pandi M-T, Patrinos GP (2019) Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. Omics: A J Integr Biol 23:539–548

    Article  CAS  Google Scholar 

  • Korteby Y, Kristó K, Sovány T, Regdon G (2018) Use of machine learning tool to elucidate and characterize the growth mechanism of an in-situ fluid bed melt granulation. Powder Technol 331:286–295

    Article  CAS  Google Scholar 

  • Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T (2017) Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 69:2657–2664

    Article  PubMed  Google Scholar 

  • Kumar S, Gopi T, Harikeerthana N, Gupta MK, Gaur V, Krolczyk GM, Wu C (2023) Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control. J Intell Manuf 34:21–55

    Article  Google Scholar 

  • Lalmuanawma S, Hussain J, Chhakchhuak L (2020) Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solit Fractals 139:110059

    Article  Google Scholar 

  • Landin M (2017) Artificial intelligence tools for scaling up of high shear wet granulation process. J Pharm Sci 106:273–277

    Article  CAS  PubMed  Google Scholar 

  • Lawrence XY, Raw A, Wu L, Capacci-Daniel C, Zhang Y, Rosencrance S (2019) FDA’s new pharmaceutical quality initiative: knowledge-aided assessment & structured applications. Int J Pharm 1:100010

    Google Scholar 

  • Li V, Wooldridge T, Wang X (2022) Transferability of quantum adversarial machine learning. In: Proceedings of 7th International Congress on Information and Communication Technology. Springer, London, 805–814

  • Litjens G, Kooi T, Bejnordi BE, AaA S, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  • Liu H, Zhang W, Nie L, Ding X, Luo J, Zou L (2019) Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinform 20:1–12

    Article  Google Scholar 

  • Liu T, Shi K, Li W (2020) Deep learning methods improve linear B-cell epitope prediction. BioData Min 13:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27:1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liyanage YW, Zois DS (2023) Interpretability in the context of sequential cost-sensitive feature acquisition. In: ICASSP 2023-IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp 1–5

  • Maharjan R, Jeong SH (2022) Application of different models to evaluate the key factors of fluidized bed layering granulation and their influence on granule characteristics. Powder Technol 408:117737

    Article  CAS  Google Scholar 

  • Maharjan R, Hada S, Lee JE, Han H-K, Kim KH, Seo HJ, Foged C, Jeong SH (2023) Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach. Int J Pharm 640:123012

    Article  CAS  PubMed  Google Scholar 

  • Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24:773–780

    Article  PubMed  Google Scholar 

  • Mäki-Lohiluoma E, Säkkinen N, Palomäki M, Winberg O, Ta HX, Heikkinen T, Kiljunen E, Kauppinen A (2021) Use of machine learning in prediction of granule particle size distribution and tablet tensile strength in commercial pharmaceutical manufacturing. Int J Pharm 609:121146

    Article  PubMed  Google Scholar 

  • Mao S, Li S, Zhang Y, Long L, Peng J, Cao Y, Mao JZ, Qi X, Xin Q, San G (2023) A highly efficient needle-free-injection delivery system for mRNA-LNP vaccination against SARS-CoV-2. Nano Today 48:101730

    Article  CAS  PubMed  Google Scholar 

  • Marcato A, Santos JE, Boccardo G, Viswanathan H, Marchisio D, Prodanović M (2023) Prediction of local concentration fields in porous media with chemical reaction using a multi scale convolutional neural network. Chem Eng J 455:140367

    Article  CAS  Google Scholar 

  • Marcou G, Aires De Sousa J, Latino DA, De Luca A, Horvath D, Rietsch V, Varnek A (2015) Expert system for predicting reaction conditions: the Michael reaction case. J Chem Inf Model 55:239–250

    Article  CAS  PubMed  Google Scholar 

  • Masic D, Fee K, Bell HL, Case M, Witherington G, Lansbury S, Ojeda-Garcia J, Mcdonald D, Schwab C, Van Delft FW (2023) Hyperactive CREB subpopulations increase during therapy in pediatric B-lineage acute lymphoblastic leukemia. Haematologica 108:981

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ (2021) Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines 6:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei S, Zhang K (2021) A machine learning framework for predicting drug–drug interactions. Sci Rep 11:17619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekni N, Coronnello C, Langer T, Rosa MD, Perricone U (2021) Support vector machine as a supervised learning for the prioritization of novel potential sars-cov-2 main protease inhibitors. Int J Mol Sci 22:7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikita JS, Mitchel J, Gatto NM, Laschinger J, Tcheng JE, Zeitler EP, Swern AS, Flick ED, Dowd C, Lystig T, Calvert SB (2021) Determining the suitability of registries for embedding clinical trials in the united states: a project of the clinical trials transformation initiative. Ther Innov Regul Sci 55:6–18

    Article  PubMed  Google Scholar 

  • Mohammed NH, Al-Rashid SZ (2023) Effective of various vaccines on antibody response and genetic immune using deep learning method. Util Math 120:330–344

    Google Scholar 

  • Moreno-Díaz R, Pichler F, Quesada-Arencibia A (2023) Computer aided systems theory–EUROCAST 2022: 18th International conference, Springer Nature, Canaria, 13789

  • Mowbray M, Vallerio M, Perez-Galvan C, Zhang D, Chanona ADR, Navarro-Brull FJ (2022) Industrial data science–a review of machine learning applications for chemical and process industries. React Chem Eng 7:1471–1509

    Article  CAS  Google Scholar 

  • Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA (2023) Recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review. AAPS PharmSciTech 24:57

    Article  PubMed  Google Scholar 

  • Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A (2021) Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 337:530–545

    Article  PubMed  Google Scholar 

  • Naderi Sohi A, Kiani J, Arefian E, Khosrojerdi A, Fekrirad Z, Ghaemi S, Zim MK, Jalili A, Bostanshirin N, Soleimani M (2021) Development of an mRNA-LNP vaccine against SARS-CoV-2: evaluation of immune response in mouse and Rhesus Macaque. Vaccines 9:1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy B, Galata DL, Farkas A, Nagy ZK (2022) Application of artificial neural networks in the process analytical technology of pharmaceutical manufacturing—a review. AAPS J 24:74

    Article  PubMed  Google Scholar 

  • Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P (2021) Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol Sci 42:151–165

    Article  CAS  PubMed  Google Scholar 

  • Ng YL, Salim CK, Chu JJH (2021) Drug repurposing for COVID-19: approaches, challenges and promising candidates. Pharmacol Ther 228:107930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogami C, Tsuji Y, Seki H, Kawano H, To H, Matsumoto Y, Hosono H (2021) An artificial neural network− pharmacokinetic model and its interpretation using Shapley additive explanations. CPT Pharmacomet Syst 10:760–768

    Article  CAS  Google Scholar 

  • Oh SH, Park J, Lee SJ, Kang S, Mo J (2022) Reinforcement learning-based expanded personalized diabetes treatment recommendation using South Korean electronic health records. Expert Syst Appl 206:117932

    Article  Google Scholar 

  • Pan Y, Zhang H, Chen Y, Gong X, Yan J, Zhang H (2023) Applications of hyperspectral imaging technology combined with machine learning in quality control of traditional chinese medicine from the perspective of artificial intelligence: a review. Crit Rev Anal. https://doi.org/10.1080/10408347.2023.2207652

    Article  Google Scholar 

  • Patel V, Shah M (2022) Artificial intelligence and machine learning in drug discovery and development. Intell Med 2:134–140

    Article  Google Scholar 

  • Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK (2021) Artificial intelligence in drug discovery and development. Drug Discov Today 26:80

    Article  CAS  PubMed  Google Scholar 

  • Pillai N, Dasgupta A, Sudsakorn S, Fretland J, Mavroudis PD (2022) Machine learning guided early drug discovery of small molecules. Drug Discov Today 27:2209–2215

    Article  CAS  PubMed  Google Scholar 

  • Pirrung SM, Van Der Wielen LA, Van Beckhoven RF, Van De Sandt EJ, Eppink MH, Ottens M (2017) Optimization of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnol Prog 33:696–707

    Article  CAS  PubMed  Google Scholar 

  • Pirrung SM, Berends C, Backx AH, Van Beckhoven RFWC, Eppink MHM, Ottens M (2019) Model-based optimization of integrated purification sequences for biopharmaceuticals. Chem Eng Sci 3:100025

    CAS  Google Scholar 

  • Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portela RM, Varsakelis C, Richelle A, Giannelos N, Pence J, Dessoy S, Von Stosch M (2021) When is an in silico representation a digital twin? A biopharmaceutical industry approach to the digital twin concept. Digital Twins Tools and Concepts for Smart Biomanufacturing. Springer, Taipei, pp 35–55

    Google Scholar 

  • Priya S, Tripathi G, Singh DB, Jain P, Kumar A (2022) Machine learning approaches and their applications in drug discovery and design. Chem Biol Drug Des 100:136–153

    Article  CAS  PubMed  Google Scholar 

  • Pšeničnik A, Reberšek R, Slemc L, Godec T, Kranjc L, Petković H (2022) Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species. J Microbiol Methods 200:106545

    Article  PubMed  Google Scholar 

  • Puranik A, Dandekar P, Jain R (2022) Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals. Biotechnol Prog 38:e3291

    Article  CAS  PubMed  Google Scholar 

  • Purushotham S, Meng C, Che Z, Liu Y (2018) Benchmarking deep learning models on large healthcare datasets. J Biomed Inform 83:112–134

    Article  PubMed  Google Scholar 

  • Ramasamy S, Nirmala K (2020) Disease prediction in data mining using association rule mining and keyword based clustering algorithms. Int J Comput Appl 42:1–8

    Google Scholar 

  • Rathore AS, Nikita S, Thakur G, Mishra S (2023) Artificial intelligence and machine learning applications in biopharmaceutical manufacturing. Trends Biotechnol 41:497–510

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MT, Singh S, Guestrin C (2016) "Why should i trust you?": Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, 1135–1144

  • Rivare A (2023) Artificial intelligence and digitalization in pharmaceutical regulatory affairs, Dissertation, University of Helsinki

  • Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, Perrie Y (2020) Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12:1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rue-Albrecht K, Mcgettigan PA, Hernández B, Nalpas NC, Magee DA, Parnell AC, Gordon SV, Machugh DE (2016) GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data. BMC Bioinform 17:1–12

    Article  Google Scholar 

  • Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT (2023) Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci 24:2026

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA (2021) mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 601:120586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serov N, Vinogradov V (2022) Artificial intelligence to bring nanomedicine to life. Adv Drug Deliv Rev 184:114194

    Article  CAS  PubMed  Google Scholar 

  • Shang C, You F (2019) Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era. Engineering 5:1010–1016

    Article  CAS  Google Scholar 

  • Sharma A, Virmani T, Pathak V, Sharma A, Pathak K, Kumar G, Pathak D (2022) Artificial intelligence-based data-driven strategy to accelerate research, development, and clinical trials of COVID vaccine. Biomed Res Int 2022:1–16

    Google Scholar 

  • Shi J-Y, Wang X, Ding G-Y, Dong Z, Han J, Guan Z, Ma L-J, Zheng Y, Zhang L, Yu G-Z (2021) Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut 70:951–961

    Article  CAS  PubMed  Google Scholar 

  • Shirazian S, Kuhs M, Darwish S, Croker D, Walker GM (2017) Artificial neural network modelling of continuous wet granulation using a twin-screw extruder. Int J Pharm 521:102–109

    Article  CAS  PubMed  Google Scholar 

  • Simões MF, Silva G, Pinto AC, Fonseca M, Silva NE, Pinto RMA, Simões S (2020) Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome. Eur J Pharm Biopharm 152:282–295

    Article  PubMed  Google Scholar 

  • Singh M, Shirazian S, Ranade V, Walker GM, Kumar A (2022) Challenges and opportunities in modelling wet granulation in pharmaceutical industry—a critical review. Powder Technol 403:117380

    Article  CAS  Google Scholar 

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Sokolović N, Ajanović M, Badić S, Banjanin M, Brkan M, Čusto N, Stanić B, Sirbubalo M, Tucak A, Vranić E (2020) Predicting the outcome of granulation and tableting processes using different artificial intelligence methods. In: Badnjevic A, Škrbić R, Pokvić LG (eds) CMBEBIH 2019. Springer International Publishing, Cham, pp 499–504

    Chapter  Google Scholar 

  • Sousa AS, Serra J, Estevens C, Costa R, Ribeiro AJ (2023) A quality by design approach in oral extended release drug delivery systems: where we are and where we are going? J Pharm Investig 53:269–306

    Article  CAS  Google Scholar 

  • Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, Xu H (2018) CLAMP–a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Inform Assoc 25:331–336

    Article  PubMed  Google Scholar 

  • Tamasi MJ, Gormley AJ (2022) Biologic formulation in a self-driving biomaterials lab. Cell Rep 3:101041

    CAS  Google Scholar 

  • Tenchov R, Bird R, Curtze AE, Zhou Q (2021) Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 15:16982–17015

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Cai L, Liu C, Sun J (2022) Microfluidic technologies for nanoparticle formation. Lab Chip 22:512–529

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, Zhang Z, Yang Z, Jin R, Dai H (2023) Distributed learning over networks with graph-attention-based personalization. IEEE Trans Signal Process 71:2071–2086

    Article  Google Scholar 

  • Uddin MJ, Ahamad MM, Hoque MN, MaA W, Aktar S, Alotaibi N, Alyami SA, Kabir MA, Moni MA (2023) A comparison of machine learning techniques for the detection of type-2 diabetes mellitus: experiences from bangladesh. Information 14:376

    Article  Google Scholar 

  • Undey C (2021) AI in Process Automation SLAS. Technol 26:1–2

    Google Scholar 

  • Usfda (2017) Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD)-discussion paper and request for feedback, https://www.fda.gov/regulatory-information/search-fda-guidance-documents/deciding-when-submit-510k-software-change-existing-device. Accessed 18 July 2023

  • Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou MM, Zhang B (2021) Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 41:1427–1473

    Article  PubMed  Google Scholar 

  • Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V (2023) CADD, AI and ML in drug discovery: a comprehensive review. Eur J Pharm Sci 181:106324

    Article  CAS  PubMed  Google Scholar 

  • Vogelaar A, Marcotte S, Cheng J, Oluoch B, Zaro J (2023) Use of microfluidics to prepare lipid-based nanocarriers. Pharmaceutics 15:1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh I, Myint M, Nguyen-Khuong T, Ho YS, Ng SK, Lakshmanan M (2022) Harnessing the potential of machine learning for advancing “quality by design” in biomanufacturing. Mabs. https://doi.org/10.1080/19420862.2021.2013593

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Feng S, Ye Z, Gao H, Lin J, Ouyang D (2022) Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm Sin 12:2950–2962

    Article  CAS  Google Scholar 

  • Wang X, Jin Y, Long M, Wang J, Jordan MI (2019) Transferable normalization: towards improving transferability of deep neural networks. In: Adv Neural Inf. NeurIPS 2019, pp

  • Wang B, Xie W, Martagan T, Akcay A (2021) Reinforcement learning under model risk for biomanufacturing fermentation control. arXiv:1–38

  • Whitley J, Zwolinski C, Denis C, Maughan M, Hayles L, Clarke D, Snare M, Liao H, Chiou S, Marmura T (2022) Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl Res 242:38–55

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ma S, Cui H, Chen J, Xu S, Wang K, Varley A, Lu RXZ, Bo W, Li B (2023) AGILE Platform: A deep learning-powered approach to accelerate LNP development for mRNA delivery. bioRxiv:543345

  • Xun S, Li D, Zhu H, Chen M, Wang J, Li J, Chen M, Wu B, Zhang H, Chai X (2022) Generative adversarial networks in medical image segmentation: a review. Comput Biol 140:105063

    Article  Google Scholar 

  • Yang C-T, Kristiani E, Leong YK, Chang J-S (2023) Big data and machine learning driven bioprocessing – recent trends and critical analysis. Bioresour Technol 372:128625

    Article  CAS  PubMed  Google Scholar 

  • Yoo S-D, Kim JY, Han S-K, Lee B-H, Choi DH, Park E-S (2023) Development of prediction model with machine learning in continuous twin screw granulation. J Pharm Investig 53:702–722

    Article  Google Scholar 

  • Yu C, Liu J, Nemati S, Yin G (2021) Reinforcement learning in healthcare: a survey. ACM Comput Surv 55:1–36

    Article  Google Scholar 

  • Zafar MB, Valera I, Rodriguez MG, Gummadi KPG (2017) Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In: Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Perth, pp 1171–1180

  • Zawbaa HM, Szlȩk J, Grosan C, Jachowicz R, Mendyk A (2016) Computational intelligence modeling of the macromolecules release from PLGA microspheres—Focus on feature selection. PLoS ONE 11:e0157610

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X-C, Wu C-K, Yang Z-J, Wu Z-X, Yi J-C, Hsieh C-Y, Hou T-J, Cao D-S (2021) MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction. Brief 22:bbab152

    Article  Google Scholar 

  • Zhang H, Li P, Meng F, Fan W, Xue Z (2023) MapReduce-based distributed tensor clustering algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-023-08415-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen J (2022) A survey on differential privacy for unstructured data content. ACM Comput Surv 54:1–28

    Google Scholar 

  • Zheng S, Zhao J (2020) A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis. Comput Chem Eng 135:106755

    Article  CAS  Google Scholar 

  • Zhu Y, Shen R, Vuong I, Reynolds RA, Shears MJ, Yao Z-C, Hu Y, Cho WJ, Kong J, Reddy SK, Murphy SC, Mao H-Q (2022) Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat Commun 13:4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34:i457–i466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2018R1A5A2023127 and NRF-2019R1A2C1083911).

Funding

National Research Foundation of Korea (NRF), NRF-2018R1A5A2023127,Seong Hoon Jeong, NRF-2019R1A2C1083911, Ki Hyun Kim

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Hyun Kim or Seong Hoon Jeong.

Ethics declarations

Conflicts of interest

All authors (R. Maharjan, J. C. Lee, K. Lee, H. K. Han, K. H. Kim, S. H. Jeong) declare that they have no conflicts of interest.

Research involving human and animal participants

The article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, R., Lee, J.C., Lee, K. et al. Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry. J. Pharm. Investig. 53, 803–826 (2023). https://doi.org/10.1007/s40005-023-00637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00637-8

Keywords

Navigation