Skip to main content
Log in

Development and statistical optimization of chitosan and eudragit based gastroretentive controlled release multiparticulate system for bioavailability enhancement of metformin HCl

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The present research was intended to develop a gastroretentive controlled release multiparticulate delivery system for a hypoglycemic drug, metformin hydrochloride (MTF) that could efficiently deliver the drug in active form and also increase its systemic bioavailability. In vitro and in vivo evaluations were performed to determine the efficacy of the formulation. MTF loaded microspheres were prepared by W/O/O double emulsion-solvent evaporation method and optimized by 32 full factorial design. The ratio of eudragit RL100 & RS100 (EL:ES) and the chitosan concentration were evaluated as independent variables for dependent variables viz. percent drug release (%DR), percent yield (%Y) and encapsulation efficiency (EE). The morphological characteristics of the microspheres were assessed using scanning electron microscopy which revealed non-aggregated, spherical shape microspheres with rough and rugged surfaces. The particle size range of the formulated microspheres was found to be ~74.77–111.18 µm. In vitro drug release best fitted Korsmeyer Peppas release characteristics with Fickian diffusion release mechanism. The optimized batch F1 demonstrated 84.17 ± 5.80 % drug release, 85.47 ± 0.28 % yield and 70.79 ± 0.67 % EE. Optimized batch performed superior pharmacokinetics with prolonged and increased intensity of hypoglycemic effect (87.68 ± 4.9 %) a relative bioavailability of 154.71 % with respect to the marketed product (56.67 ± 4.7 %). These findings highlight the potential of formulated microparticles as a superior candidate for gastro-retentive sustained release delivery of MTF with respect to marketed product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya S, Patra S, Pani NR (2014) Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr Polym 102:360–368. doi:10.1016/j.carbpol.2013.11.060

    Article  CAS  PubMed  Google Scholar 

  • Ahuja M, Singh S, Kumar A (2013) Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. Int J Biol Macromol 53:114–121. doi:10.1016/j.ijbiomac.2012.10.033

    Article  CAS  PubMed  Google Scholar 

  • Allam AN, Mehanna MM (2015) Formulation, physicochemical characterization and in vivo evaluation of ion-sensitive metformin loaded-biopolymeric beads. Drug Dev Ind Pharm 26:1–9

    Google Scholar 

  • Amereican Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(1):S62–S69. doi:10.2337/dc10-S062

    Article  Google Scholar 

  • Banerjee P, Deb J, Roy A, Ghosh A, Chakraborty P (2012) Fabrication and development of pectin microsphere of metformin hydrochloride. ISRN Pharm 230621:1–7. doi:10.5402/2012/230621

    Google Scholar 

  • Box G, Hunter W, Hunter J (1978) An introduction to design, data analysis and model building. Stat Exp, 1st edn. Wiley, NewYork, pp 510–520

    Google Scholar 

  • Bretnall AE, Clarke GS (1998) Metformin hydrochloride. In: Brittain HG (ed) Analytical profile of drug substances and excipients, vol 25. Academic Press, New York, pp 243–293

    Chapter  Google Scholar 

  • Cetin M, Atila A, Sahin S, Vural I (2013) Preparation and characterization of metformin hydrochloride loaded-Eudragit®RSPO and Eudragit®RSPO/PLGA nanoparticles. Pharm Dev Technol 18(3):570–576. doi:10.3109/10837450.2011.604783

    Article  CAS  PubMed  Google Scholar 

  • Cheng CL, Chou CH (2001) Determination of metformin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J Chromatogr B Biomed Sci Appl 762(1):51–58. doi:10.1016/S0378-4347(01)00342-5

    Article  CAS  PubMed  Google Scholar 

  • Cheng CL, Yu LX, Lee HL, Yang CY, Luee CS, Chou CH (2004) Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. Eur J Pharm Sci 22:297–304. doi:10.1016/j.ejps.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  • Choudhury PK, Kar M (2009) Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters. J Microencapsul 26(1):46–53. doi:10.1080/02652040802130503

    Article  CAS  PubMed  Google Scholar 

  • Crison JR, Timmins P, Keung A, Upreti VV, Boulton DW, Scheer BJ (2012) Biowaiver approach for biopharmaceutics classification system class 3 compound metformin hydrochloride using in silico modeling. J Pharm Sci 101:1773–1782. doi:10.1002/jps.23063

    Article  CAS  PubMed  Google Scholar 

  • Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, Fujitaki JM, van Poelje PD, Huang J, Lipscomb WN, Erion MD (2007) Discovery of potent and specific fructose-1,6-bisphosphatase inhibitors and a series of orally-bioavailable phosphoramidase-sensitive prodrugs for the treatment of type 2 diabetes. J Am Chem Sci 129:15491–15502. doi:10.1021/ja074871l

    Article  CAS  Google Scholar 

  • Dave BS, Amin AF, Patel MM (2004) Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation. AAPS PharmSciTech 5(2):1–6. doi:10.1208/pt050234

    Article  Google Scholar 

  • Dinarvand R, Moghadam SH, Sheikhi A, Atyabi F (2005) Effect of surfactant HLB and different formulation variables on the properties of poly-d,l-lactide microspheres of naltrexone prepared by double emulsion technique. J Microencapsul 22(2):139–151. doi:10.1080/02652040400026392

    Article  CAS  PubMed  Google Scholar 

  • Eisenächer F, Garbacz G, Mäder K (2014) Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets. Eur J Pharm Biopharm 88(3):778–786. doi:10.1016/j.ejpb.2014.07.009

    Article  PubMed  Google Scholar 

  • Fischbach MA, Bluestone JA, Lim WA (2013) Cell-based therapeutics: the next pillar of medicine. Sci Trans Med 5:179ps7. doi:10.1126/scitranslmed.3005568

  • Grassi M, Grassi G (2005) Mathematical modelling and controlled drug delivery: matrix systems. Curr Drug Deliv 2(1):97–116. doi:10.2174/1567201052772906

    Article  CAS  PubMed  Google Scholar 

  • Gundogdu N, Cetin M (2014) Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation. Pak J Pharm Sci 27(6):1923–1929

    CAS  PubMed  Google Scholar 

  • Haque SE, Sheela A (2014) Design and in vitro evaluation of interpolymer complex bound metformin sustained release tablet. J Appl Polym Sci 131:41018. doi:10.1002/APP.41018

    Article  Google Scholar 

  • Hasan AA, Madkor H, Wageh S (2013) Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 20(3–4):120–126. doi:10.3109/10717544.2013.779332

    Article  CAS  PubMed  Google Scholar 

  • Hawkins D, Bradberry JC, Cziraky MJ, Talbert RL, Bartels DW, Cerveny JD (2002) National pharmacy cardiovascular council treatment guidelines for the management of type 2 diabetes mellitus: toward better patient outcomes and new roles for pharmacists. Pharmacotherapy 22:436–444. doi:10.1592/phco.22.7.436.33667

    Article  PubMed  Google Scholar 

  • Haznedar S, Dortunç B (2004) Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Int J Pharm 269(1):131–140. doi:10.1016/j.ijpharm.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Rel 89(2):151–165. doi:10.1016/S0168-3659(03)00126-3

    Article  CAS  Google Scholar 

  • Hu LD, Liu Y, Tang X, Zhang Q (2006) Preparation and in vitro/in vivo evaluation of sustained-release metformin hydrochloride pellets. Eur J Pharm Biopharm 64(2):185–192. doi:10.1016/j.ejpb.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  • Huanbutta K, Cheewatanakornkool K, Terada K, Nunthanid J, Sriamornsak P (2013) Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydr Polym 97(1):26–33. doi:10.1016/j.carbpol.2013.04.073

    Article  CAS  PubMed  Google Scholar 

  • Ige PP, Gattani S (2012) Development of low density microspheres of metformin hydrochloride using ethyl cellulose and HPMC K4M: in vitro and in vivo characterization. Polym Plastic Technol Eng 51(15):1537–1544. doi:10.1080/03602559.2012.715709

  • Inoyatov N, Celebi N, Acarturk F (1998) Preparation and evaluation of a prolonged release pentoxyfylline tablet with chitosan. Pharm Ind 60:472–475

    CAS  Google Scholar 

  • Jelvehgari M, Montazam SH (2012) Comparison of microencapsulation by emulsion-solvent extraction/evaporation technique using derivatives cellulose and acrylate-methacrylate copolymer as carriers. Jundishapur J Nat Pharm Prod 7:144–152

    PubMed  PubMed Central  Google Scholar 

  • Kaith BS, Sharma R, Kalia S, Bhatti MS (2014) Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 4:40339–40344. doi:10.1039/C4RA05300A

    Article  CAS  Google Scholar 

  • Kawashima Y, Niwa T, Handa T, Takeuchi H, Iwamoto T, Itoh Y (1989) Preparation of prolonged-release spherical micro-matrix of ibuprofen with acrylic polymer by the emulsion-solvent diffusion method for improving bioavailability. Chem Pharm Bull 37(2):425–429. doi:10.1248/cpb.37.425

    Article  CAS  PubMed  Google Scholar 

  • Kharb V, Saharan VA, Dev K, Jadhav H, Purohit S (2014) Formulation, evaluation and 3(2) full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres. Pharm Dev Technol 19(7):839–852. doi:10.3109/10837450.2013.836220

    Article  CAS  PubMed  Google Scholar 

  • Kristmundsdottir T, Ingvarsdottir K, Saemundsdottir G (1995) Chitosan matrix tablets: the influence of excipients on drug release. Drug Dev Ind Pharm 21:1591–1598

    Article  CAS  Google Scholar 

  • Kujawa P, Moraille P, Sanchez J, Badia A, Winnik FM (2005) Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: a surface plasmon resonance spectroscopy and atomic force microscopy investigation. J Am Chem Soc 127(25):9224–9234. doi:10.1021/ja044385n

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ahuja M (2012) Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 90:637–643. doi:10.1016/j.carbpol.2012.05.089

    Article  CAS  PubMed  Google Scholar 

  • Lalau JD (2010) Lactic acidosis induced by metformin. Drug Saf 33:727–740. doi:10.2165/11536790-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang L, Shao Y, Ni R, Zhang T, Mao S (2013) Drug release characteristics from chitosan-alginate matrix tablets based on the theory of self-assembled film. Int J Pharm 450(1–2):197–207. doi:10.1016/j.ijpharm.2013.04.052

    CAS  PubMed  Google Scholar 

  • Li L, Wang L, Li J, Jiang S, Wang Y, Zhang X, Ding J, Yu T, Mao S (2014) Insights into the mechanisms of chitosan–anionic polymers-based matrix tablets for extended drug release. Int J Pharm 476:253–265

    Article  CAS  PubMed  Google Scholar 

  • Marathe PH, Arnold ME, Meeker J, Greene DS, Barbhaiya RH (2000) Pharmacokinetics and bioavailability of a metformin/glyburide tablet administered alone and with food. J Clin Pharmacol 40:1494–1502. doi:10.1177/009127000004001222

    CAS  PubMed  Google Scholar 

  • Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM (1988) Sustained release of indomethacin from chitosan granules in beagle dogs. J Pharm Pharmacol 40:642–643

    Article  CAS  PubMed  Google Scholar 

  • Momoh MA, Kenechukwu FC, Attama AA (2013) Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride. Drug Deliv 20(3–4):102–111. doi:10.3109/10717544.2013.779329

    Article  CAS  PubMed  Google Scholar 

  • Myers J, Zonszein J (2002) Diagnostic criteria and classification of diabetes. In: Poretsky L (ed) Principles of diabetes mellitus. Kluwer, Norwell, pp 95–106. doi:10.1007/978-1-59259-985-1_8

  • Nayak AK, Pal D (2013) Formulation optimization and evaluation of jackfruit seed starch–alginate mucoadhesive beads of metformin HCl. Int J Biol Macromol 59:264–272. doi:10.1016/j.ijbiomac.2013.04.062

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Jain SK, Pandey RS (2011) Controlling release of metformin HCl through incorporation into stomach specific floating alginate beads. Mol Pharm 8:2273–2281. doi:10.1021/mp2001395

    Article  CAS  PubMed  Google Scholar 

  • Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 96:349–357. doi:10.1016/j.carbpol.2013.03.08

    Article  CAS  PubMed  Google Scholar 

  • Nayak AK, Pal D, Santra K (2014a) Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr Polym 101:220–230. doi:10.1016/j.carbpol.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  • Nayak AK, Pal D, Santra K (2014b) Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 103:154–163. doi:10.1016/j.ijbiomac.2013.12.031

    Article  CAS  PubMed  Google Scholar 

  • Nila MV, Sudhir MR, Cinu TA, Aleykutty NA, Jose S (2014) Floating microspheres of carvedilol as gastro retentive drug delivery system: 32 full factorial design and in vitro evaluation. Drug Deliv 21(2):110–117. doi:10.3109/10717544.2013.834414

    Article  CAS  PubMed  Google Scholar 

  • NIST/SEMATECH (2015) e-Handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/pri/section3/pri339.htm. Accessed 15 July 2015

  • Okor RS (1989) Modification of solute dissolution rate by coprecipitation with certain acrylate–methacrylate copolymers. J Appl Polym Sci 37(5):1233–1238. doi:10.1002/app.1989.070370507

    Article  CAS  Google Scholar 

  • Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC (2011) Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 3:4104–4108. doi:10.1039/C1NR10661A

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Patel A, Solanki T (2012) Formulation and evaluation of bilayer tablet by using melt granulation technique for treatment of diabetes mellitus. J Pharm Bioallied Sci 4:S37–S39. doi:10.4103/0975-7406.94135

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel BB, Patel JK, Chakraborty S, Shukla D (2013) Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. doi:10.1016/j.jsps.2013.12.013

    Google Scholar 

  • Peura L, Huttunen KM (2014) Sustained release of metformin via red blood cell accumulated sulfenamide prodrug. J Pharm Sci 103:2207–2210. doi:10.1002/jps.24040

    Article  CAS  PubMed  Google Scholar 

  • Roy H, Brahma CK, Nandi S, Parida KR (2013) Formulation and design of sustained release matrix tablets of metformin hydrochloride: influence of hypromellose and polyacrylate polymers. Int J Appl Basic Med Res 3(1):55–63. doi:10.4103/2229-516X.112242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander C, Madsen KD, Hyrup B, Nielsen HM, Rantanen J, Jacobsen J (2013a) Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration. Eur J Pharm Biopharm 85(3):682–688. doi:10.1016/j.ejpb.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  • Sander C, Nielsen HM, Jacobsen J (2013b) Buccal delivery of metformin: TR146 cell culture model evaluating the use of bioadhesive chitosan discs for drug permeability enhancement. Int J Pharm 458(2):254–261. doi:10.1016/j.ijpharm.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  • Setter SM, Iltz JL, Thams J, Campbell RK (2003) Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Ther 25:2991. doi:10.1016/S0149-2918(03)90089-0

    Article  CAS  PubMed  Google Scholar 

  • Sharma HK, Lahkar S, Nath LK (2013) Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources. Acta Pharm 63:209–222. doi:10.2478/acph-2013-0019

    Article  CAS  PubMed  Google Scholar 

  • Shivkumar HN, Patel PB, Desai BG, Ashok P, Arulmozhi S (2007) Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. Acta Pharm 57:269–285. doi:10.2478/v10007-007-0022-8

    Google Scholar 

  • Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2–3):139–157. doi:10.1016/S0169-409X(01)00112-0

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174. doi:10.1016/j.addr.2012.09.028

    Article  Google Scholar 

  • Singh B, Garg B, Chaturvedi SC, Arora S, Mandsaurwale R, Kapil R, Singh B (2012) Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends. J Pharm Pharmcol 64:654–669. doi:10.1111/j.2042-7158.2011.01442.x

    Article  CAS  Google Scholar 

  • Snima KS, Jayakumar R, Unnikrishnan AG, Nair SV, Lakshmanan VK (2012) O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym 89(3):1003–1007. doi:10.1016/j.carbpol.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  • Snima KS, Jayakumar R, Lakshmanan VK (2014) In vitro and in vivo biological evaluation of O-carboxymethyl chitosan encapsulated metformin nanoparticles for pancreatic cancer therapy. Pharm Res 31(12):3361–3370. doi:10.1007/s11095-014-1425-0

    Article  CAS  PubMed  Google Scholar 

  • Sorlier P, Denuziere A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2(3):765–772. doi:10.1021/bm015531+

    Article  CAS  PubMed  Google Scholar 

  • Steinberg DM, Kenett RS (2014) Response surface methodology. Wiley StatsRef: Statistics Reference Online. doi:10.1002/9781118445112.stat04105

  • Streubel A, Siepmann J, Bodmeier R (2006) Gastroretentive drug delivery systems. Expert Opin Drug Deliv 3(2):217–233. doi:10.1517/17425247.3.2.217

    Article  CAS  PubMed  Google Scholar 

  • Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119. doi:10.1016/j.ijbiomac.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Gupta A, Joshi M, Tiwari G (2014) Bilayer tablet formulation of metformin HCl and acarbose: a novel approach to control diabetes. PDA J Pharm Sci Technol 68(2):138–152. doi:10.5731/pdajpst.2014.00953

    Article  PubMed  Google Scholar 

  • Trapani A, Laquintana V, Denora N, Lopedota A, Cutrignelli A, Franco M, Trapani G, Liso G (2007) Eudragit RS 100 microparticles containing 2-hydroxypropyl-beta-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur J Pharm Sci 30(1):64–74. doi:10.1016/j.ejps.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Umadevi SK, Thiruganesh R, Suresh S, Bhaskar Reddy K (2010) Formulation and evaluation of chitosan microspheres of aceclofenac for colon-targeted drug delivery. Biopham Drug Dispos 31(7):407–427. doi:10.1002/bdd.722

    Article  CAS  Google Scholar 

  • Upadrashta SM, Katikaneni PR, Nuessle NO (1992) Chitosan as a tablet binder. Drug Dev Ind Pharm 18:1701–1708

    Article  CAS  Google Scholar 

  • Valizadeh H, Nayyeri-Maleki P, Ghanbarzadeh S, Sheikhloo A, Servat H, Nemati M, Zakeri-Milani P (2014) Pharmacokinetics and bioequivalence of two brands of metformin 500 mg tablets in Iranian healthy volunteers. J Pharm Invest 44(1):61–68. doi:10.1007/s40005-013-0102-3

    Article  CAS  Google Scholar 

  • Wadher KJ, Kakde RB, Umekar MJ (2011) Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers. Indian J Pharm Sci 73(2):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LC, Di LQ, Liu R, Wu H (2013) Characterizations and microsphere formulation of polysaccharide from the marine clam (Mactra veneriformis). Carbohydr Polym 92(1):106–113. doi:10.1016/j.carbpol.2012.08.084

    Article  CAS  PubMed  Google Scholar 

  • Yadav KS, Sawant KK (2010) Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv 7:51–64. doi:10.2174/156720110790396517

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S (2010) DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 12(3):263–271. doi:10.1208/s12248-010-9185-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All authors (A. K. Sahu, A. Verma) declare that they have no conflict of interest. The authors would like to acknowledge Production Manager, Harman Finochem Ltd., India, Evonik Pharma Polymers GmbH, Mumbai, and Central Institute of Fisheries Technology, Kochi for providing gift samples. Special thanks to Principal, VNS Institute of Pharmacy, Bhopal for availing the permissions and required facilities to carry out in vivo studies. We extend our gratitude to the staff members of Department of Pharmacy, SHIATS, Allahabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A.K., Verma, A. Development and statistical optimization of chitosan and eudragit based gastroretentive controlled release multiparticulate system for bioavailability enhancement of metformin HCl. Journal of Pharmaceutical Investigation 46, 239–252 (2016). https://doi.org/10.1007/s40005-016-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0229-0

Keywords

Navigation