Skip to main content
Log in

Broadening the Gene Pool of Cashew (Anacardium occidentale) for Survival and Precocity

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

The narrow genetic base of cashew cultivars limits productivity. A germplasm exploration survey (2006–2008) was undertaken to select high-yielding cashew trees (candidate trees) on farmer’s fields across three contrasting agro-ecological zones over a longitude of 6° S and 10° N and a latitude of 4° W and 2° E. High-yielding trees (candidate plus trees) from different zones were grafted and evaluated (2009–2015) with four best clones recommended for farmers for survival, vigor, nut yield and nut weight at Bole (marginal environment) and Wenchi (near-optimal environment) using RCBD with four replications. Shannon–Weiner diversity index (H′) for nut yield among candidate trees was higher (p < 0.001) in the semi-deciduous zone (3.0) than Forest transition (2.6) and Guinea savannah (2.5) zones. There were significant clone × location interaction effects for all traits. Survival ranged from 26.1 to 90%, while nut yields varied from 160.8 to 825 kg/ha/year. The genotypic and phenotypic coefficient of variation for various traits ranged from 12.6–59.01 to 6.23–18% while heritability (h2bs) and genetic gains varied from 0.21–0.48 to 5.0–39%, respectively. The genotypic correlation coefficients between traits at Bole and Wenchi varied from 0.33–0.98 to 0.07–0.77 respectively. Based on survival and precocity traits at Bole, the top five best-performing clones were BAMBOI7, BAME7, IDDM29, KT4, and KT5 collected from farmer’s fields. The identified clones constitute a suitable genetic resource pool for breeding resilient cashew varieties to increase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abidin PE (2004) Sweetpotato breeding for northeastern Uganda: farmer varieties, farmer-participatory selection, and stability of performance

  2. Addaquay J, Nyamekye-Boamah K (1998) The ghana cashew industry study. report prepared for ministry of food and agriculture under the agricultural diversification project, world bank

  3. Adu-Gyamfi PKK, Abu Dadzie M, Barnor M, Akpertey A, Arthur A, Osei-Akoto S, Ofori A, Padi F (2019) Genetic variability and trait association studies in cashew (Anacardium occidentale L.). Sci Hortic 255:108–114. https://doi.org/10.1016/j.scienta.2019.05.023

    Article  Google Scholar 

  4. Akpertey A, Dadzie AM, Adu-Gyamfi PKK, Ofori A, Padi FK (2017) Effectiveness of juvenile traits as selection criteria for yield efficiency in kola. Sci Hortic 216:264–271

    Article  Google Scholar 

  5. Aliyu OM, Adeigbe OO, Lawal OO (2014) Phenotypic stability analysis of yield components in cashew (Anacardium occidentale L.) using additive main effect and multiplicative interaction (AMMI) and GGE biplot analyses. Plant Breed Biotechnol 2(4):354–369

    Article  Google Scholar 

  6. Aliyu OM, Awopetu JA (2011) Variability study on nut size and number trade-off identify a threshold level for optimum yield in cashew (Anacardium occidentale L.). Int J Fruit Sci 11(4):342–363

    Article  Google Scholar 

  7. Aliyu OM (2012) Genetic diversity of Nigerian cashew germplasm. In: Caliskan M (ed) Genetic diversity in plants, pp 163–184

  8. Anbarashan M, Parthasarathy N (2013) Tree diversity of tropical dry evergreen forests dominated by single or mixed species on the Coromandel coast of India. Trop Ecol 54(2):179–190

    Google Scholar 

  9. Antonio L, Griffith G (2017) The cashew value chain in Mozambique: analysis of performance and suggestions for improvement. Int J Food Syst Dyn 8(3):208–221

    Google Scholar 

  10. Arab MM, Marrano A, Abdollahi-Arpanahi R, Leslie CA, Cheng H, Neale DB, Vahdati K (2020) Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut. J Exp Bot 71(3):1107–1127

    PubMed  CAS  Google Scholar 

  11. Archak S, Gaikwad A, Gautam D, Rao EV, Swamy KR, Karihaloo J (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46(3):362–369

    Article  PubMed  CAS  Google Scholar 

  12. Armah FA, Odoi JO, Yengoh GT, Obiri S, Yawson DO, Afrifa EK (2011) Food security and climate change in drought-sensitive savanna zones of Ghana. Mitig Adapt Strat Glob Change 16(3):291–306

    Article  Google Scholar 

  13. Balogoun I, Ahoton EL, Saïdou A, Bello OD, Ezin V (2016) Effect of climatic factors on cashew (Anacardium occidentale L.) Productivity in Benin (West Africa). J Earth Sci Clim Change 7(1):1. https://doi.org/10.4172/2157-7617.1000329

    Article  Google Scholar 

  14. Bello D, Ahoton L, Saidu A, Akponikpè I, Ezin V, Balogoun I, Aho N (2017) Climate change and cashew (Anacardium occidentale L.) productivity in Benin (West Africa): perceptions and endogenous measures of adaptation. Int J Biol Chem Sci 11(3):924–946

    Article  Google Scholar 

  15. Bezerra MA, Lacerda CFd, Gomes Filho E, de Abreu CE, Prisco JT (2007) Physiology of cashew plants grown under adverse conditions. Braz J Plant Physiol 19(4):449–461

    Article  CAS  Google Scholar 

  16. Borojevic K (2002) Principles of plant breeding, 2nd ed. J Hered 93(3):229. https://doi.org/10.1093/jhered/93.3.229

    Article  Google Scholar 

  17. Burton GW (1952) Quantitative inheritance in grasses. Pro VI Int Grassl Cong 1952:277–283

    Google Scholar 

  18. CDP (2000) Republic of ghana cashew development project report. MOFA. https://www.afdb.org/fileadmin/uploads/afdb/Documents/Project-and-Operations/Ghana_-_Cashew_Development_Project_-_Appraisal_Report.pdf. Accessed GHA/PAAA/2000/01

  19. Chandrasekhar M, Sethi K, Tripathy P, Das T, Dash M, Roy A (2018) Studies on variability, heritability and genetic advance for quantitative and qualitative traits in cashew (Anacardium occidentale L.). E-palnet 16(2):139–146

    Google Scholar 

  20. Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B Biological Sci 272(1571):1415–1425

    Article  Google Scholar 

  21. Chivandi E, Mukonowenzou N, Nyakudya T, Erlwanger KH (2015) Potential of indigenous fruit-bearing trees to curb malnutrition, improve household food security, income and community health in sub-Saharan Africa: a review. Food Res Int 76:980–985

    Article  Google Scholar 

  22. Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65(4):419–439

    Article  Google Scholar 

  23. Cooper H, Spillane C, Hodgkin T (2001) Broadening the genetic base of crop production. 10.1079/9780851994116.0000

  24. Dadzie AM, Adu-Gyamfi PKK, Opoku SY, Yeboah J, Akpertey A, Opoku-Ameyaw K, Assuah M, Gyedu-Akoto E, Danquah WB (2014) Evaluation of potential cashew clones for utilization in Ghana. Adv Biol Chem 04(04):8. https://doi.org/10.4236/abc.2014.44028

    Article  Google Scholar 

  25. Datta S (2013) Impact of climate change in Indian horticulture—a review. Int J Sci Environ Technol 2(4):661–671

    Google Scholar 

  26. Dedzoe C, Senayah J, Asiamah R (2001) Suitable agro-ecologies for cashew (Anacardium occidetale L.) production in Ghana. West Afr J Appl Ecol 2(1)103–115

  27. Degla P (2015) Technical Efficiency in Producing Cashew Nuts in Benin’s Savanna Zone, West Africa. Q J Int Agric 54(892-2016-65241):117–132

    Google Scholar 

  28. Dendena B, Corsi S (2014) Cashew, from seed to market: a review. Agron Sustain Dev 34(4):753–772

    Article  Google Scholar 

  29. Dierig D, Thompson A, Rebman J, Kleiman R, Phillips B (1996) Collection and evaluation of new Lesquerella and Physaria germplasm. Ind Crops Prod 5(1):53–63

    Article  CAS  Google Scholar 

  30. Evans R, Mariwah S, Antwi KB (2014) Cashew cultivation, access to land and food security in Brong-Ahafo region, Ghana: preventing the intergenerational transmission of poverty

  31. Falade JA (1977) Cashew growing soils in Nigeria. East Afr Agric For J 43:100–105. https://doi.org/10.1080/00128325.1977.11662885

    Article  Google Scholar 

  32. Falconer D, Mackay T (1981) Introduction to quantitative genetics, 2nd edn. Longman, New York

    Google Scholar 

  33. Ghimiray M, Katwal TB (2013) Crop genetic resources for food security and Adaptationto climate change: a review and way forward. J Renew Nat Resour Bhutan 9(1):1–19

    Google Scholar 

  34. Ghimiray M, Vernooy R (2017) The importance and challenges of crop germplasm interdependence: the case of Bhutan. Food Secur 9(2):301–310

    Article  Google Scholar 

  35. Hamasha H, Schmidt-Lebuhn A, Durka W, Schleuning M, Hensen I (2013) Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biol 15(5):882–891

    Article  PubMed  CAS  Google Scholar 

  36. Harilal K, Kanji N, Jeyaranjan J, Eapen M, Swaminathan P (2006) Power in global value chains: Implications for employment and livelihoods in the cashew nut industry in India. International Institute for Environment and Development, London

    Google Scholar 

  37. Hasheminasab H, Assad M (2017) Genetic and multivariate phenotypic analyses of some selection indices in Pistachio (Pistacia vera L.) cultivars under drought stress conditions, vol 49. https://doi.org/10.2298/gensr1702705h

  38. Hutcheson K (1970) A test for comparing diversities based on the Shannon formula. J Theor Biol 29(1):151–154

    Article  PubMed  CAS  Google Scholar 

  39. Ingram V, Yago-Quattara E, Lartey A, Mogre D, Wijnands J, van den Berg J (2015) Gender dynamics in cashew and shea value chains from Ghana and Burkina Faso. LEI Wageningen UR

  40. Iquira E, Gagnon E, Belzile F (2010) Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean. Genome 53(5):337–345

    Article  PubMed  CAS  Google Scholar 

  41. Jansky S (2009) Breeding, genetics, and cultivar development. In: Advances in potato chemistry and technology. Elsevier, pp 27–62

  42. Johnson D (1973) The botany, origin, and spread of the cashew Anacardium occidentale L. J Plant Crops 1(1–2):1–7

    Google Scholar 

  43. Johnson HW, Robinson H, Comstock R (1955) Estimates of genetic and environmental variability in soybeans 1. Agron J 47(7):314–318

    Article  Google Scholar 

  44. Kamali A, Owji A (2016) Agro-ecological requirements for growing pistachio trees: a literature review. Elixir Agric 96:41450–41454

    Google Scholar 

  45. Kaushik N, Deswal R, Malik S, Kumar K (2015) Genetic variation and heritability estimation in Jatropha curcas L. progenies for seed yield and vegetative traits. J Appl Nat Sci 7(2):567–573

    Article  CAS  Google Scholar 

  46. Kearsey MJ, Pooni HS (1998) The genetical analysis of quantitative traits. Stanley Thornes (Publishers) Ltd, London

    Google Scholar 

  47. Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1093

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kobra K, Hossain M, Talukder M, Bhuyan M (2012) Performance of twelve mango cultivars grown in different agroecological zones of Bangladesh. Bangladesh J Agric Res 37(4):691–710

    Article  Google Scholar 

  49. Kris-Etherton PM (1999) Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 100(11):1253–1258. https://doi.org/10.1161/01.CIR.100.11.1253

    Article  PubMed  CAS  Google Scholar 

  50. Lanhua G, Huixin P, Minren H, Jiesen S (2005) Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoides(I-69) × P. euramericana (I-45). J Nanjing For Univ 29(2):6–10

    Google Scholar 

  51. Lei Q, Zhou J, Zhang W, Luo J, Wu K, Long C (2018) Morphological diversity of panicle traits in Kam fragrant glutinous rice (Oryza sativa). Genet Resour Crop Evol 65(3):775–786

    Article  CAS  Google Scholar 

  52. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ludwig-Müller J (2009) Guide to cultivated plants. J Plant Growth Regul 28(1):87–88. https://doi.org/10.1007/s00344-008-9071-6

    Article  CAS  Google Scholar 

  54. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.03 (2018) CIMMYT research data & software repository network. http://hdl.handle.net/11529/10201

  55. Madeni JP (2016) Genotype × environment interaction on performance of selected cashew (Anacardium occidentale L.) hybrids in Tanzania. MSc. thesis, Sokoine University of Agriculture, Tanzania

  56. Masawe P, Cundall E, Caligari P (1999) Studies on genotype-environment interaction (GxE) in half-sib progenies of cashew (Anacardium occidentale L.) in Tanzania. Tanzan J Agric Sci 2(1):53–62

    Google Scholar 

  57. Mitchell J, Mori SA (1987) The cashew and its relatives (Anacardium: Anacardiaceae). El marañón y sus parientes (Anacardium: Anacardiaceae). Mem New York Bot Gard 42(1):1–76

    Google Scholar 

  58. Mitchell J, Mori SA (1987) The cashew and its relatives (Anacardium: Anacardiaceae). El marañón y sus parientes (Anacardium: Anacardiaceae). Mem New York Bot Gard 42:1–76

    Google Scholar 

  59. Monteiro F, Catarino L, Batista D, Indjai B, Duarte MC, Romeiras MM (2017) Cashew as a high agricultural commodity in West Africa: insights towards sustainable production in Guinea-Bissau. Sustainability 9(9):1666

    Article  Google Scholar 

  60. Muthu Kumar S, Ponnuswami V, Padmadevi K (2011) Cashew industry in India. In: I international symposium on cashew nut 1080, pp 97–101

  61. Mwase WF, Savill PS, Hemery G (2008) Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seedling orchard at Little Wittenham in England. New Forest 36(3):225–238

    Article  Google Scholar 

  62. Nayak D, Singh A, Srivastav M (2013) Estimation of genetic parameters of fruit quality traits in mango hybrid population. Indian J Hortic 70(1):13–17

    Google Scholar 

  63. Nehe A, Akin B, Sanal T, Evlice AK, Ünsal R, Dinçer N, Demir L, Geren H, Sevim I, Orhan Ş (2019) Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE 14(7):e0219432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Odeseye AO, Amusa NA, Ijagbone IF, Aladele SE, Ogunkanmi LA (2018) Genotype by environment interactions of twenty accessions of cowpea [Vigna unguiculata (L.) Walp] across two locations in Nigeria. Ann Agrar Sci 16(4):481–489

    Article  Google Scholar 

  65. Ofori A, Padi F, Acheampong K, Lowor S (2015) Genetic variation and relationship of traits related to drought tolerance in cocoa (Theobroma cacao L.) under shade and no-shade conditions in Ghana. Euphytica 201(3):411–421

    Article  CAS  Google Scholar 

  66. Ofori A, Padi F, Akpertey A, Adu-Gyamfi P, Dadzie M, Amoah F (2017) Variability of survival and yield traits in cacao (Theobroma cacao L.) clones under marginal field conditions in Ghana. J Crop Improv 31(6):847–861

    Article  Google Scholar 

  67. Ofori A, Padi F, Assuah, Anim-Kwapong (2014) Broadening the gene pool of cocoa (Theobroma cacao L) progenies with guiana clones: establishment and precocity traits, vol 28. https://doi.org/10.1080/15427528.2014.939322

  68. Oliveira VH, Miranda FR, Lima RN, Cavalcante RRR (2006) Effect of irrigation frequency on cashew nut yield in Northeast Brazil. Sci Hortic 108(4):403–407. https://doi.org/10.1016/j.scienta.2006.02.003

    Article  Google Scholar 

  69. Padi FK, Adu-Gyamfi P, Akpertey A, Arthur A, Ofori A (2013) Differential response of cocoa (Theobroma cacao) families to field establishment stress. Plant Breed 132(2):229–236. https://doi.org/10.1111/pbr.12039

    Article  Google Scholar 

  70. Padi F, Ofori A, Arthur A (2017) Genetic variation and combining abilities for vigour and yield in a recurrent selection programme for cacao. J Agric Sci 155(3):444–464

    Article  Google Scholar 

  71. Padi FK, Opoku SY, Adomako B, Adu-Ampomah Y (2012) Effectiveness of juvenile tree growth rate as an index for selecting high yielding cocoa families. Sci Hortic 139:14–20

    Article  Google Scholar 

  72. Papademetriou MK, Herath EM (1998) Integrated production practices of cashew in Asia. RAP Publication (FAO)

  73. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14(1):53–67

    Article  Google Scholar 

  74. Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS ONE 14(5):e0217148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Salam MA, Peter K (2010) Cashew-a monograph, p 257

  76. Scheldeman X, Van Damme P, Motoche JR, Alvarez JU (2006) Germplasm collection and fruit characterisation of cherimoya (Annona cherimola) in Loja Province, Ecuador, an important centre of biodiversity. Belg J Bot 139(1):27–38

    Google Scholar 

  77. Sethi K, Tripathy P, Mohapatra K (2016) Variability and heritability of important quantitative. Environ Ecol 34(4):1795–1798

    Google Scholar 

  78. Singh M, Ceccarelli S, Hamblin J (1993) Estimation of heritability from varietal trials data. Theor Appl Genet 86(4):437–441

    Article  PubMed  CAS  Google Scholar 

  79. Sys C, Van Ranst E et al (1993) Land evaluation part 3: crop requirements agricultural publications no. 7. G.A.D.C., Brussels

    Google Scholar 

  80. Uloko B, Edibo G (2009) Nutrient dynamics in soil and cashew (Anacardium occidentale L.) leaf and kernel in Kogi State, Nigeria. J Appl Biosci 25:1573–1578

    Google Scholar 

  81. Zhang Q-D, Jia R-Z, Meng C, Ti C-W, Wang Y-L (2015) Diversity and population structure of a dominant deciduous tree based on morphological and genetic data. AoB Plants. https://doi.org/10.1093/aobpla/plv103

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Gabriel Boahen and the field staff of Bole-Substation for their support and assistance throughout this study. This manuscript is published with the kind permission of the Executive Director of CRIG as manuscript number CRIG/011/2019/035/004.

Funding

The work was supported by of the Cashew Development Project (CDP) with funding from the African Development Bank (AfDB) under Grant (GHA/PAAA/2000/01) and the Cocoa Research Institute of Ghana (CRIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. K. Adu-Gyamfi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adu-Gyamfi, P.K.K., Barnor, M., Akpertey, A. et al. Broadening the Gene Pool of Cashew (Anacardium occidentale) for Survival and Precocity. Agric Res 10, 613–625 (2021). https://doi.org/10.1007/s40003-020-00521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-020-00521-z

Keywords

Navigation