Skip to main content

Advertisement

Log in

Antibiotic-resistant microorganisms in patients with bloodstream infection of intraabdominal origin: risk factors and impact on mortality

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Knowledge of resistance patterns is essential to choose empirical treatment. We aimed to determine the risk factors for antibiotic-resistant microorganisms (ARM) in intraabdominal infections (IAI) and their impact on mortality.

Methods

Retrospective cohort study of patients with bacteremia from IAI origin in a single hospital between January 2006 and July 2017.

Results

A total of 1485 episodes were recorded, including 381 (25.6%) due to ARM. Independent predictors of ARM were cirrhosis (OR 2; [95% CI 1.15–3.48]), immunosuppression (OR 1.49; 1.12–1.97), prior ceftazidime exposure (OR 3.7; 1.14–11.9), number of prior antibiotics (OR 2.33; 1.61–3.35 for 1 antibiotic), biliary manipulation (OR 1.53; 1.02–2.96), hospital-acquisition (OR 2.77; 1.89–4) and shock (OR 1.48; 1.07–2). Mortality rate of the whole cohort was 11.1%. Age (OR 1.03; 1.01–1.04), cirrhosis (OR 2.32; 1.07–4.38), urinary catheter (OR 1.99; 1.17–3.38), ultimately (OR 2.28; 1.47–3.51) or rapidly (OR 13.3; 7.12–24.9) fatal underlying disease, nosocomial infection (OR 2.76; 1.6–4.75), peritonitis (OR 1.95, 1.1–3.45), absence of fever (OR 2.17; 1.25–3.77), shock (OR 5.96; 3.89–9.13), and an ARM in non-biliary infections (OR 2.14; 1.19–3.83) were independent predictors of 30-day mortality. Source control (OR 0.24; 0.13–0.44) and 2015–2017 period (OR 0.29; 0.14–0.6) were protective.

Conclusion

Biliary manipulation and septic shock are predictors of ARM. The presence of an ARM from a non-biliary focus is a poor-prognosis indicator. Source control continues to be of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seguin P, Laviolle B, Chanavaz C, Donnio PY, Gautier-Lerestif AL, Campion JP, et al. Factors associated with multidrug-resistant bacteria in secondary peritonitis: impact on antibiotic therapy. Clin Microbiol Infect. 2006;12:980–5.

    Article  CAS  Google Scholar 

  2. Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Cantón R, Baquero F. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother. 2010;54:3043–6.

    Article  CAS  Google Scholar 

  3. Krobot K, Yin D, Zhang Q, Sen S, Altendorf-Hofmann A, Scheele J, et al. Effect of inappropriate initial empiric antibiotic therapy on outcome of patients with community-acquired intra-abdominal infections requiring surgery. Eur J Clin Microbiol Infect Dis. 2004;23:682–7.

    Article  CAS  Google Scholar 

  4. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe - Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) (2018). Stockholm: ECDC. https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf. Accesed 14 July 2020.

  5. McCabe WR, Jackson GG. Gram-negative bacteremia: II. clinical, laboratory, and therapeutic observations. Arch Intern Med. 1962;110:856–64.

    Article  Google Scholar 

  6. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791–7.

    Article  Google Scholar 

  7. Levy MM, Mitchell PF, Marshall JC, Abraham E, Angus D, Cook A, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–6.

    Article  Google Scholar 

  8. Swenson BR, Metzger R, Hedrick TL, McElearney ST, Evans HL, Smith RL, et al. Choosing antibiotics for intra-abdominal infections: what do we mean by “high risk”? Surg Infect (Larchmt). 2009;10:29–39.

    Article  Google Scholar 

  9. Seguin P, Fédun Y, Laviolle B, Nesseler N, Donnio PY, Mallédant Y. Risk factors for multidrug-resistant bacteria in patients with post-operative peritonitis requiring intensive care. J Antimicrob Chemother. 2010;65:342–6.

    Article  CAS  Google Scholar 

  10. Ortega M, Marco F, Soriano A, Almela M, Martínez JA, López J, et al. Epidemiology and prognosis determinants of bacteraemic biliary tract infection. J Antimicrob Chemother. 2012;67:1508–13.

    Article  CAS  Google Scholar 

  11. Reuken PA, Torres D, Baier M, Löffler B, Lübbert C, Lippmann N, et al. Risk Factors for Multi-Drug Resistant Pathogens and Failure of Empiric First-Line Therapy in Acute Cholangitis. PLoS ONE. 2017;12:e0169900.

    Article  Google Scholar 

  12. Montravers P, Dufour G, Guglielminotti J, Desmard M, Muller C, Houissa H, et al. Dynamic changes of microbial flora and therapeutic consequences in persistent peritonitis. Crit Care. 2015;19:70.

    Article  Google Scholar 

  13. Labricciosa FM, Sartelli M, Abbo LM, Barbadoro P, Ansaloni L, Coccolini F, et al. Epidemiology and risk factors for isolation of multi-drug-resistant organisms in patients with complicated intra-abdominal infections. Surg Infect (Larchmt). 2018;19:264–72.

    Article  Google Scholar 

  14. Cantón R, Loza E, Aznar J, Castillo FJ, Cercenado E, Fraile-Ribot PA, et al. Monitoring the antimicrobial susceptibility of Gram-negative organisms involved in intraabdominal and urinary tract infections recovered during the SMART study (Spain, 2016 and 2017). Rev Esp Quimioter. 2019;32:145–55.

    PubMed  PubMed Central  Google Scholar 

  15. Ben-Ami R, Rodríguez-Baño J, Arslan H, Pitout JD, Quentin C, Calbo E, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis. 2009;49:682–90.

    Article  Google Scholar 

  16. Trecarichi EM, Cauda R, Tumbarello M. Detecting risk and predicting patient mortality in patients with extended-spectrum β-lactamase-producing Enterobacteriaceae bloodstream infections. Future Microbiol. 2012;7:1173–89.

    Article  CAS  Google Scholar 

  17. Mohd Sazlly Lim S, Wong PL, Sulaiman H, Atiya N, Hisham Shunmugam R, Liew SM. Clinical prediction models for ESBL-Enterobacteriaceae colonization or infection: a systematic review. J Hosp Infect. 2019;102:8–16.

    Article  CAS  Google Scholar 

  18. Detsis M, Karanika S, Mylonakis E. ICU acquisition rate, risk factors, and clinical significance of digestive tract colonization with extended-spectrum beta-lactamase-producing enterobacteriaceae: a systematic review and meta-analysis. Crit Care Med. 2017;45:705–14.

    Article  Google Scholar 

  19. Anesi JA, Lautenbach E, Tamma PD, Thom KA, Blumberg EA, Alby K et al. Risk factors for extended-spectrum beta-lactamase-producing Enterobacterales bloodstream infection among solid organ transplant recipients. Clin Infect Dis 2020; 28: pii: ciaa190.

  20. Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, Vehreschild MJ. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients - Review of the literature from a clinical perspective. Crit Rev Microbiol. 2016;42:1–16.

    Article  CAS  Google Scholar 

  21. Xiao T, Yang K, Zhou Y, Zhang S, Ji J, Risk Y, factors and outcomes in non-transplant patients with extended-spectrum beta-lactamase-producing Escherichia coli bacteremia: a retrospective study from, , et al. to 2016. Antimicrob Resist Infect Control. 2013;2019(8):144.

    Google Scholar 

  22. Boix-Palop L, Xercavins M, Badía C, Obradors M, Riera M, Freixas N, et al. Emerging extended-spectrum β-lactamase-producing Klebsiella pneumoniae causing community-onset urinary tract infections: a case–control–control study. Int J Antimicrob Agents. 2017;50:197–202.

    Article  CAS  Google Scholar 

  23. Boontham P, Soontomrak R. Intra-Abdominal Infections: Prevalence and Risk Factors of ESBLs Infections. J Med Assoc Thai. 2015;98:1097–103.

    PubMed  Google Scholar 

  24. Li G, Ren J, Wu Q, Hu D, Wang G, Wu X, et al. Bacteriology of Spontaneous Intra-Abdominal Abscess in Patients with Crohn Disease in China: Risk of Extended-Spectrum Beta-Lactamase-Producing Bacteria. Surg Infect (Larchmt). 2015;16:461–5.

    Article  Google Scholar 

  25. Maseda E, Ramírez S, Picatto P, Peláez-Peláez E, García-Bernedo C, Ojeda-Betancur N, et al. Critically ill patients with community-onset intraabdominal infections: Influence of healthcare exposure on resistance rates and mortality. PLoS ONE. 2019;14:e0223092.

    Article  CAS  Google Scholar 

  26. Coque TM, Baquero F, Canton R. (2008) Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13: pii: 19044.

  27. Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum b-lactamase producing enterobacteriaceae in Europe. Clin Microbiol Infect. 2008;14:144–53.

    Article  Google Scholar 

  28. Routsi C, Pratikaki M, Platsouka E, Sotiropoulou C, Papas V, Pitsiolis T, et al. Risk factors for carbapenem-resistant Gram-negative bacteremia in intensive care unit patients. Intensive Care Med. 2013;39:1253–61.

    Article  CAS  Google Scholar 

  29. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58:2322–8.

    Article  Google Scholar 

  30. Bennion RS, Baron EJ, Thompson JE Jr, Downes J, Summanen P, Talan DA, et al. The bacteriology of gangrenous and perforated appendicitis–revisited. Ann Surg. 1990;211:165–71.

    Article  CAS  Google Scholar 

  31. Montuori M, Santurro L, Gianotti L, Fattori L. Uselessness of microbiological samples in acute appendicitis with frank pus: to collect or not to collect? Eur J Trauma Emerg Surg. 2020;46:835–9.

    Article  Google Scholar 

  32. Chen CY, Chen YC, Pu HN, Tsai CH, Chen WT, Lin CH. Bacteriology of acute appendicitis and its implication for the use of prophylactic antibiotics. Surg Infect (Larchmt). 2012;13:383–90.

    Article  Google Scholar 

  33. Reinisch A, Malkomes P, Habbe N, Bechstein WO, Liese J. Bad bacteria in acute appendicitis: rare but relevant. Int J Colorectal Dis. 2017;32:1303–11.

    Article  Google Scholar 

  34. Andrey V, Crisinel PA, Prod’hom G, Croxatto A, Joseph JM. Impact of co-amoxicillin-resistant Escherichia coli and Pseudomonas aeruginosa on the rate of infectious complications in paediatric complicated appendicitis. Swiss Med Wkly. 2019;149:w20055.

    PubMed  Google Scholar 

  35. Augustin P, Tran-Dinh A, Valin N, Desmard M, Crevecoeur MA, Muller-Serieys C, et al. Pseudomonas aeruginosa post-operative peritonitis: clinical features, risk factors, and prognosis. Surg Infect (Larchmt). 2013;14:297–303.

    Article  Google Scholar 

  36. Montravers P, Dupont H, Leone M, Constantin JM, Mertes PM; Société française d’anesthésie et de réanimation (Sfar) et al. Guidelines for management of intra-abdominal infections. Anaesth Crit Care Pain Med 2015; 34: 117–30.

  37. Fortún J, Coque TM, Martín-Dávila P, Moreno L, Cantón R, Loza E, et al. Risk factors associated with ampicillin resistance in patients with bacteraemia caused by Enterococcus faecium. J Antimicrob Chemother. 2002;50:1003–9.

    Article  Google Scholar 

  38. Tedim AP, Ruiz-Garbajosa P, Corander J, Rodríguez CM, Cantón R, Willems RJ, et al. Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol. 2015;81:1820–31.

    Article  Google Scholar 

  39. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–111.

    Article  Google Scholar 

  40. Torres A, Chalmers JD, Dela Cruz CS, Dominedò C, Kollef M, Martin-Loeches I, et al. Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med. 2019;45:159–71.

    Article  Google Scholar 

  41. Masadeh M, Chandra S, Livorsi D, Johlin F, Silverman W. Evaluation of Biliary Bacterial Resistance in Patients with Frequent Biliary Instrumentation, One Size Does Not Fit All. Dig Dis Sci. 2018;63:3474–9.

    Article  Google Scholar 

  42. Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE. 2020;15:e0227139.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a routine work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Rodríguez-Núñez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Núñez, O., Agüero, D.L., Morata, L. et al. Antibiotic-resistant microorganisms in patients with bloodstream infection of intraabdominal origin: risk factors and impact on mortality. Infection 49, 693–702 (2021). https://doi.org/10.1007/s15010-021-01592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-021-01592-y

Keywords

Navigation