Skip to main content

Advertisement

Log in

Ferritin levels predict severe dengue

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Currently, no tests are available to monitor and predict severity and outcome of dengue. To find potential markers that predict dengue severity, the present study validated the serum level of three acute-phase proteins α-1 antitrypsin, ceruloplasmin and ferritin in a pool of severe dengue cases compared to non-severe forms and other febrile illness controls.

Methods

A total of 96 patients were divided into two equal groups with group ‘A’ comprising dengue-infected cases and group ‘B’ with other febrile illness cases negative for dengue. Out of 48 dengue-infected cases, 13 had severe dengue and the remaining 35 were classified as non-severe dengue. Immunoassays were performed to evaluate the serum levels of acute-phase proteins both on the day of admission and on the day of defervescence. The efficiency of individual proteins in predicting the disease severity was assessed using receiver operating characteristic curve.

Results

The study did not find any significant difference in the levels of α-1 antitrypsin between the clinical groups. A significant increase in the levels of ceruloplasmin around defervescence in severe cases compared to non-severe and other febrile controls was observed and this is the first report describing the potential association of ceruloplasmin and dengue severity. Interestingly, a steady increase in the level of serum ferritin was recorded throughout the course of illness. Among all the three proteins, the elevated ferritin level could predict the disease severity with highest sensitivity and specificity of 76.9 and 83.3 %, respectively, on the day of admission and the same was found to be 90 and 91.6 % around defervescence.

Conclusion

On the basis of this diagnostic efficiency, we propose that ferritin may serve as a potential biomarker for an early prediction of disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO|Dengue and severe dengue (Internet). WHO. http://www.who.int/mediacentre/factsheets/fs117/en/.

  2. Martina BEE, Koraka P, Osterhaus ADME. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009;22:564–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Soundravally R, Sankar P, Bobby Z, Hoti SL. Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation. Platelets. 2008;19:447–54.

    Article  CAS  PubMed  Google Scholar 

  4. Soundravally R, Hoti SL, Patil SA, Cleetus CC, Zachariah B, Kadhiravan T, Narayanan P, Agiesh Kumar B. Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int J Inf dis. 2014;18:68–72.

    Article  CAS  Google Scholar 

  5. Srikiatkhachorn A, Green S. Markers of dengue disease severity. Curr Top Microbiol Immunol. 2010;338:67–82.

    CAS  PubMed  Google Scholar 

  6. Pawitan JA. Dengue virus infection: predictors for severe dengue. Acta Medica Indones. 2011;43:129–35.

    Google Scholar 

  7. Fragnoud R, Yugueros-Marcos J, Pachot A, Bedin F. Isotope coded protein labeling analysis of plasma specimens from acute severe dengue fever patients. Proteome Sci. 2012;10:60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Albuquerque LM, Trugilho MRO, Chapeaurouge A, et al. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients. J Proteome Res. 2009;8:5431–41.

    Article  CAS  PubMed  Google Scholar 

  9. Devignot S, Sapet C, Duong V, et al. Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue. PLoS One. 2010;5:e11671.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Loke P, Hammond SN, Leung JM, et al. Gene expression patterns of dengue virus-infected children from nicaragua reveal a distinct signature of increased metabolism. PLoS Negl Trop Dis. 2010;4:e710.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Deans C, Wigmore SJ. Systemic inflammation, cachexia, and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care. 2005;8:265–9.

    Article  CAS  PubMed  Google Scholar 

  12. Endre ZH, Westhuyzen J. Early detection of acute kidney injury :emerging new biomarkers. Nephrology (Carlton). 2008;13:91–8.

    Article  CAS  Google Scholar 

  13. Srikiatkhachorn A, Green S. Markers of dengue disease severity. In: Rothman AL, editor. Dengue Virus, Current Topics in Microbiology and Immunology. 2010;338:67–81.

  14. Kong YY, Thay CH, Tin TC, Devi S. Rapid detection, serotyping and quantitation of dengue viruses by TaqMan real-time one-step RT-PCR. J Virol Methods. 2006;138:123–30.

    Article  CAS  PubMed  Google Scholar 

  15. Wiwanitkit V. Accuracy and applicability of the revised WHO classification (2009) of dengue. Infection. 2013;41:1047. doi:10.1007/s15010-013-0435-x. (Epub 2013 Mar 9. PubMed PMID: 23475504).

  16. Prasad D, Kumar C, Jain A, Kumar R. Accuracy and applicability of the revised WHO classification (2009) of dengue in children seen at a tertiary healthcare facility in northern India. Infection. 2013;41:775–82. doi:10.1007/s15010-013-0405-3. (Epub 2013 Feb 5. PubMed PMID: 23381875).

  17. De Kruif MD, Setiati TE, Mairuhu ATA, et al. Differential gene expression changes in children with severe dengue virus infections. PLoS Negl Trop Dis. 2008;2:e215.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kumar Y, Liang C, Bo Z, Rajapakse JC, Ooi EE, Tannenbaum SR. Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. PLoS Negl Trop Dis. 2012;6:e1887.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Carrell RW. Alpha-1 antitrypsin: molecular pathology, leukocytes, and tissue damage. J Clin Invest. 1986;78:1427–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhou X, Shapiro L, Fellingham G, Willardson BM, Burton GF. HIV replication in CD4 + T lymphocytes in the presence and absence of follicular dendritic cells: inhibition of replication mediated by α-1 antitrypsin through altered IκBα ubiquitination. J Immunol. 2011;186:3148–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thayan R, Huat TL, See LLC, et al. The use of two-dimension electrophoresis to identify serum biomarkers from patients with dengue haemorrhagic fever. Trans R Soc Trop Med Hyg. 2009;103:413–9.

    Article  CAS  PubMed  Google Scholar 

  22. Novikova I, Zlotnikova M. Ceruloplasmin plasma levels in patients with severe forms of herpes infection. Biomed Pap Med Fac Univ Palacký Olomouc Czechoslov. 2011;155:361–6.

    Article  CAS  Google Scholar 

  23. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis. 2006;187:238–50.

    Article  CAS  PubMed  Google Scholar 

  24. Ackerman Z, Pappo O, Ben-Dov IZ. The prognostic value of changes in serum ferritin levels during therapy for hepatitis C virus infection. J Med Virol. 2011;83:1262–8.

    Article  CAS  PubMed  Google Scholar 

  25. Soepandi PZ, Burhan E, Mangunnegoro H, et al. Clinical course of avian influenza A (H5N1) in patients at the Persahabatan Hospital, Jakarta, Indonesia, 2005–2008. Chest. 2010;138:665–73.

    Article  CAS  PubMed  Google Scholar 

  26. Cunha BA, Sachdev B, Canario D. Serum ferritin levels in West Nile encephalitis. Clin Microbiol Infect Dis. 2004;10:184–6.

    Article  CAS  Google Scholar 

  27. Monnin M, M’bou F. An epidemic of dengue fever in a department of paediatrics: report on 58 cases in Lamentin (Martinique). Arch Pédiatr. 2005;12:144–50.

    Article  CAS  PubMed  Google Scholar 

  28. Chaiyaratana W, Chuansumrit A, Atamasirikul K, Tangnararatchakit K. Serum ferritin levels in children with dengue infection. Southeast Asian J Trop Med Public Health. 2008;39:832–6.

    CAS  PubMed  Google Scholar 

  29. Gregory CJ, Lorenzi OD, Colón L, Sepúlveda García A, Santiago LM, et al. Utility of the tourniquet test and the white blood cell count to differentiate dengue among acute febrile illnesses in the emergency room. PLoS Negl Trop Dis. 2011;5:e1400.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fuchs D, Zangerle R, Artner-Dworzak E, et al. Association between immune activation, changes of iron metabolism and anaemia in patients with HIV infection. Eur J Haematol. 1993;50:90–4.

    Article  CAS  PubMed  Google Scholar 

  31. Arranz Caso JA. Garcia Tena J, Llorens MM, Moreno R: High serum ferritin concentration in an AIDS patient with miliary tuberculosis. Clin Infect Dis. 1997;25:1263–4.

    Article  PubMed  Google Scholar 

  32. Ray S, Kundu S, Saha M, Chakrabarti P. Hemophagocytic syndrome in classic dengue fever. J Glob Infect Dis. 2011;3:399–401.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99:3505–16.

    Article  CAS  PubMed  Google Scholar 

  34. Reif DW. Ferritin as a source of iron for oxidative damage. Free Radic Biol Med. 1992;12:417–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Narayanan P (Dept. of paediatrics), Dr. Kadhiravan T (Dept. of medicine), and Dr. SujathaS (Dept. of Microbiology) for providing clinical description of patients. This work was supported by intramural Grant from Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) and Prof. TRR Research grant, SASTRA University.

Conflict of interest

None declared.

Ethical standard

The study has been approved by institute ethics committee and informed written consent has been obtained from the participants involved in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Soundravally or B. Agieshkumar.

Additional information

R. Soundravally and B. Agieshkumar are equally contributed authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soundravally, R., Agieshkumar, B., Daisy, M. et al. Ferritin levels predict severe dengue. Infection 43, 13–19 (2015). https://doi.org/10.1007/s15010-014-0683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-014-0683-4

Keywords

Navigation