Skip to main content
Log in

Insights into manganese removal from mine water by Chlorella vulgaris

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Microalgae have been extensively applied on bioremediation processes and biosorption is usually considered the main mechanism describing metal removal from wastewaters. Nevertheless, the water chemistry is modified during algal growth and the increase in both pH and oxygen concentrations result in metal precipitation. In this regard, the aim of the current study is to investigate how these two phenomena promote metal removal from waters, applying Chlorella vulgaris and high concentrations of manganese (50 mg/L)—one of the most common and difficult metals to be removed from fresh- and wastewaters alike. Triplicate experiments were carried out at 25 °C and 150 min−1 under 24 h/day of artificial light and revealed that the growth of C. vulgaris was associated with a reduction in Mn2+ concentration to values below 1 mg/L, as the pH changed from 6.2 to 9.6, within 14 days. Biosorption as a removal mechanism appears not to be relevant as the manganese uptake by the C. vulgaris cells was actually reduced from 10.9 mg/g (10 min) to 0.9 mg/L, within 24 h of testing, indicating desorption of the manganese initially adsorbed. Furthermore, the formation of brown precipitates containing Mn3+/Mn4+ oxy-hydroxides was observed, which was confirmed upon reaction with leucoberbelin blue (LBB) solutions. In addition, no evidence of the participation of extracellular materials on Mn2+ removal was observed. These outcomes support the hypothesis that an increase in pH, resulting from the growth of C. vulgaris, is responsible for increasing pH to values above 8.0, values in which Mn2+ oxidation is catalysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.  7

Similar content being viewed by others

References

  • Almomani F, Bhosale RR (2021) Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: application of isotherm, kinetic models and process optimization. Sci Total Environ 755:142654

    Article  CAS  PubMed  ADS  Google Scholar 

  • Amengol BPC (2021) Estudo cinético and termodinâmico da adsorção do manganês em resinas de troca iônica. 2021. 68f. Dissertação de mestrado Thesis. Programa de Pós-Graduação em Engenharia Ambiental. Universidade Federal de Ouro Preto.

  • Ameri A, Tamjidi S, Dehghankhalili F, Farhadi A, Saati MA (2020) Application of algae as low cost and effective bio-adsorbent for removal of heavy metals from wastewater: a review study. Environ Technol Rev 9(1):85–110

    Article  Google Scholar 

  • Boogerd FC, de Vrind JP (1987) Manganese oxidation by Leptothrix discophora. J Bacteriol 169(2):489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boorman GA (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Health Perspect 107(suppl 1):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candido C, Lombardi AT (2017) Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J Appl Phycol 29(1):45–53

    Article  CAS  Google Scholar 

  • Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Vlaskin MS, Chauhan PK, Kumar V (2023) Heavy metal tolerance in microalgae: detoxification mechanisms and applications. Aquat Toxicol 260:106555

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Tripathy B, Kumar MS, Das AP (2023) Ecotoxicological consequences of manganese mining pollutants and their biological remediation. Environ Chem Ecotoxicol 5:55–61

    Article  CAS  Google Scholar 

  • Duarte RA (2009) Estudo da remoção de manganês de efluentes de mineração utilizando cal, calcário and dióxido de manganês 2009. 90f. Dissertação Thesis. CDTN - Centro de Desenvolvimento da Tecnologia Nuclear. Belo Horizonte

  • Duckworth OW, Rivera NA, Gardner TG, Andrews MY, Santelli CM, Polizzotto ML (2017) Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system. Environ Sci Process Impacts 19(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw A, Greenwood N (2002) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Goswami RK, Agrawal K, Shah MP, Verma P (2021) Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Lett Appl Microbiol 75:1–17

    Google Scholar 

  • Hao OJ, Davis AP, Chang PH (1991) Kinetics of manganese(II) oxidation with chlorine. J Environ Eng 117(3):359–374

    Article  CAS  Google Scholar 

  • Huang F, Dang Z, Guo C-L, Lu G-N, Gu RR, Liu H-J, Zhang H (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B 107:11–18

    Article  CAS  Google Scholar 

  • Instituto Mineiro de Gestão Das Águas (2020) Encarte especial sobre a qualidade das águas do rio doce após 5 anos do rompimento dambarragem de Fundão. 74p

  • Instituto Mineiro de Gestão Das Águas (2015) Acompanhamento da qualidade das águas do Rio Doce após o rompimento da barragem da samarco no distrito de Bento Rodrigues—Mariana/MG Belo Horizonte. 49p

  • Jiao Y, Zhang C, Su P, Tang Y, Huang Z, Ma T (2023) A review of acid mine drainage: formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf Environ Prot 170:1240–1260

    Article  CAS  Google Scholar 

  • Kızılkaya B, Türker G, Akgül R, Doğan F (2012) Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: equilibrium and kinetics. J Dispersion Sci Technol 33(3):410–419

    Article  Google Scholar 

  • Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate—a new renal carcinogen. Environ Health Perspect 87:309–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levett A, Gagen EJ, Levett I, Erskine PD (2023) Integrating microalgae production into mine closure plans. J Environ Manage 337:117736

    Article  CAS  PubMed  Google Scholar 

  • Liu X-Y, Hong Y, Liang M, Zhai Q-Y (2023) Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. Biores Technol 385:129382

    Article  CAS  Google Scholar 

  • Luther GW, Thibault de Chanvalon A, Oldham VE, Estes ER, Tebo BM, Madison AS (2018) Reduction of manganese oxides: thermodynamic, kinetic and mechanistic considerations for one-versus two-electron transfer steps. Aquat Geochem 24:257–277

    Article  CAS  Google Scholar 

  • Ma Y, Ma M, Palomo A, Sun Y, Modrzynski JJ, Aamand J, Zheng Y (2023) Biodegradation of trace sulfonamide antibiotics accelerated by substrates across oxic to anoxic conditions during column infiltration experiments. Water Res 242:120193

    Article  CAS  PubMed  Google Scholar 

  • Mayanna S, Peacock CL, Schäffner F, Grawunder A, Merten D, Kothe E, Büchel G (2015) Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem Geol 402:6–17

    Article  CAS  ADS  Google Scholar 

  • Mohamed ZA (2001) Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna. Water Res 35(18):4405–4409

    Article  CAS  PubMed  Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim Cosmochim Acta 69(1):35–48

    Article  CAS  ADS  Google Scholar 

  • Neculita CM, Rosa E (2019) A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 214:491–510

    Article  CAS  PubMed  ADS  Google Scholar 

  • NEN 6520 Water: Spectrophotometric Determination of Chlorophyll-a Content. Nederlands Normalisatie-instituut, Delft, The Netherlands Norm N (1981)

  • Okibe N, Nonaka K, Kondo T, Shimada K, Liu P (2023) Microbiological passive treatment of Mn/Zn-containing mine water. Hydrometallurgy 219:106084

    Article  CAS  Google Scholar 

  • Priya AK, Jalil AA, Vadivel S, Dutta K, Rajendran S, Fujii M, Soto-Moscoso M (2022) Heavy metal remediation from wastewater using microalgae: recent advances and future trends. Chemosphere 305:135375

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshanee M, Das S (2021) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng 9(1):104686

    Article  CAS  Google Scholar 

  • Raj ARA, Mylsamy P, Sivasankar V, Kumar BS, Omine K, Sunitha TG (2023) Heavy metal pollution of river water and eco-friendly remediation using potent microalgal species. Water Sci Eng. https://doi.org/10.1016/j.wse.2023.04.001

    Article  Google Scholar 

  • Ramachandran M, Schwabe KA, Ying SC (2021) Shallow groundwater manganese merits deeper consideration. Environ Sci Technol 55(6):3465–3466

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Richardson LL, Aguilar C, Nealson KH (1988) Manganese oxidation in pH and O2 microenvironments produced by phytoplankton1,2. Limnol Oceanogr 33(3):352–363

    Article  CAS  PubMed  ADS  Google Scholar 

  • Saavedra R, Muñoz R, Taboada ME, Vega M, Bolado S (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Biores Technol 263:49–57

    Article  CAS  Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol 34(5):649–657

    Article  CAS  Google Scholar 

  • Sly LI, Hodgkinson MC, Arunpairojana V (1990) Deposition of manganese in a drinking water distribution system. Appl Environ Microbiol 56(3):628–639

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sorlini S, Gialdini F, Biasibetti M, Collivignarelli C (2014) Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation. Water Res 54:44–52

    Article  CAS  PubMed  Google Scholar 

  • Spain O, Plöhn M, Funk C (2021) The cell wall of green microalgae and its role in heavy metal removal. Physiol Plant 173(2):526–535

    Article  CAS  PubMed  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35(2):171–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strosnider WHJ, Hugo J, Shepherd NL, Holzbauer-Schweitzer BK, Hervé-fernández P, Wolkersdorfer C, Nairn RW (2020) A snapshot of coal mine drainage discharge limits for conductivity, sulfate, and manganese across the developed world. Mine Water Environ 39(2):165–172

    Article  CAS  ADS  Google Scholar 

  • Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319

    Article  CAS  PubMed  Google Scholar 

  • Wood RJ (2009) Manganese and birth outcome. Nutr Rev 67(7):416–420

    Article  PubMed  Google Scholar 

  • Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Biores Technol 175:537–544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work had the support of the Universidade Federal de Ouro Preto and funds were provided by the agencies CAPES, FAPEMIG, FINEP and CNPq. The CAPES and CNPq scholarships to G. Cândido and V. Leão, respectively, are particularly recognized.

Funding

Please see acknowledgements section.

Author information

Authors and Affiliations

Authors

Contributions

GC Cândido defined and carried out the experimental work and data analysis and was also responsive for writing; AA Santos carried out the experimental work and data analysis; AF Santiago advised the student and revised the research; VAL advised Cândido and Santos and was responsible for reviewing, translating and editing the document.

Corresponding author

Correspondence to V. A. Leão.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: N.S. El-Gendy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cândido, G.C., Santos, A.A., Santiago, A.F. et al. Insights into manganese removal from mine water by Chlorella vulgaris. Int. J. Environ. Sci. Technol. 21, 4715–4726 (2024). https://doi.org/10.1007/s13762-023-05290-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05290-0

Keywords

Navigation