Skip to main content
Log in

Microalgae-based wastewater treatment system: current state, antibiotic resistant bacteria and antibiotic resistance genes reduction potentials

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Microalgae-based wastewater treatment system has shown the potentials to yield organic matter, nutrients, and pathogens removal levels, which are comparable to those achieved by conventional wastewater treatment system. The system has recently gained more popularity owing to its green, clean nature as well as the ease of operation and maintenance. These positive attributes have earned the system a recognition as the potential substitute for the conventional wastewater treatment system. However, due to the existing concerns over the inability of the conventional wastewater treatment system to deal with emerging contaminants, any alternate wastewater treatment option should, among other things, show promises in this respect. This review investigates the current state of utilization of microalgae-based wastewater system in treating real wastewaters across the world. It further highlights the ability of the system to deal with resistome (antibiotic resistant bacteria and antibiotic resistance genes) as emerging contaminants. The various mechanisms potentially employed by the system in resistome removal were elaborated. At the same time, the desirable microalgal attributes relevant to the system were also highlighted. Hopefully, this synthesis will pave way for better appreciation and utilization of microalgae-based wastewater system as a sustainable system that satisfies the minimum requirements for the modern-day wastewater treatment system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:1–10. https://doi.org/10.1186/1475-2859-11-96

    Article  CAS  Google Scholar 

  • Ambrico A, Trupo M, Magarelli R, Balducchi R, et al (2020) Effectiveness of Dunaliella salina extracts against Bacillus subtilis and bacterial plant pathogens. Pathogens 9(8):613

  • Ansa EDO, Lubberding HJ, Ampofo JA, Gijzen HJ (2011) The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol Eng 37:317–324. https://doi.org/10.1016/j.ecoleng.2010.11.023

    Article  Google Scholar 

  • Ansa EDO, Lubberding HJ, Gijzen HJ (2012) The effect of algal biomass on the removal of faecal coliform from domestic wastewater. Appl Water Sci 2:87–94. https://doi.org/10.1007/s13201-011-0025-y

    Article  CAS  Google Scholar 

  • Arcila JS, Buitrón G (2016) Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J Chem Technol Biotechnol 91:2862–2870. https://doi.org/10.1002/jctb.4901

    Article  CAS  Google Scholar 

  • Awuah E, Anohene F, Asante K, Lubberding H, Gijzen H (2001) Environmental conditions and pathogen removal in macrophyte- and algal-based domestic wastewater treatment systems. Water Sci Technol 44:11–18. https://doi.org/10.2166/wst.2001.0329

    Article  CAS  Google Scholar 

  • Bahlaoui MA, Baleux B, Troussellier M (1997) Dynamics of pollution-indicator and pathogenic bacteria in high-rate oxidation wastewater treatment ponds. Water Res 31:630–638. https://doi.org/10.1016/S0043-1354(96)00299-0

    Article  CAS  Google Scholar 

  • Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02603

    Article  Google Scholar 

  • Bhagavathy S, Sumathi P, Bell JS, I., (2011) Green algae Chlorococcum humicola- a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Biomed 1:S1. https://doi.org/10.1016/S2221-1691(11)60111-1

    Article  Google Scholar 

  • Borowitzka MA (2016) The physiology of microalgae. Physiol Microalgae. https://doi.org/10.1007/978-3-319-24945-2

    Article  Google Scholar 

  • Buchanan N, Young P, Cromar NJ, Fallowfield HJ (2018) Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia. Water Sci Technol 78:3–11. https://doi.org/10.2166/wst.2018.201

    Article  CAS  Google Scholar 

  • Chambonniere P, Bronlund J, Guieysse B (2021) Pathogen removal in high-rate algae pond: state of the art and opportunities. J Appl Phycol 33:1501–1511. https://doi.org/10.1007/s10811-020-02354-3

    Article  CAS  Google Scholar 

  • Chen B, Li F, Liu N, Ge F, Xiao H, Yang Y (2015) Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresour Technol 190:299–306. https://doi.org/10.1016/j.biortech.2015.04.080

    Article  CAS  Google Scholar 

  • Cheng X, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Smith GB, Nirmalakhandan N, Zhang Y (2020) Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: a comparative study. Sci Total Environ 711:134435. https://doi.org/10.1016/j.scitotenv.2019.134435

    Article  CAS  Google Scholar 

  • Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS (2015) Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community. Biores Technol 175:578–585

  • Coutteau P, (1996) Micro-algae. ManProd Live Food Aquac. 7–48

  • Craggs RJ, Zwart A, Nagels JW, Davies-Colley RJ (2004) Modelling sunlight disinfection in a high rate pond. Ecol Eng 22:113–122. https://doi.org/10.1016/j.ecoleng.2004.03.001

    Article  Google Scholar 

  • Craggs RJ, Sutherland D, Campbell H (2010) World-first wastewater algal bio-crude oil demonstration. In: Proceedings of Water New Zeeland’s Conference, vol 22, p 24

  • Craggs R, Park J, Heubeck S, Sutherland D (2014) High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zeal J Bot 52:60–73. https://doi.org/10.1080/0028825X.2013.861855

    Article  Google Scholar 

  • Curtis TP, Mara DD, Silva SA (1992) Influence of pH, oxygen, and humic substances on ability of sunlight to damage fecal coliforms in waste stabilization pond water. Appl Environ Microbiol 58:1335–1343. https://doi.org/10.1128/aem.58.4.1335-1343.1992

    Article  CAS  Google Scholar 

  • Cybulska J, Halaj M, Cepák V, Lukavský J, Capek P (2016) Nanostructure features of microalgae biopolymer. Starch-Stärke. 68(7–8):629–636

    Article  CAS  Google Scholar 

  • Davies-Colley RJ, Donnison AM, Speed DJ, Ross CM, Nagels JW (1999) Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: Interactions of environmental factors with sunlight. Water Res 33:1220–1230. https://doi.org/10.1016/S0043-1354(98)00321-2

    Article  CAS  Google Scholar 

  • Davies-Colley RJ, Craggs RJ, Nagels JW (2003) Disinfection in a pilot-scale advanced pond system (APS) for domestic sewage treatment in New Zealand. Water Sci Technol 48:81–87. https://doi.org/10.2166/wst.2003.0091

    Article  CAS  Google Scholar 

  • Davies-Colley RJ, Craggs RJ, Park J, Sukias JPS, Nagels JW, Stott R (2005) Virus removal in a pilot-scale “advanced” pond system as indicated by somatic and F-RNA bacteriophages. Water Sci Technol 51:107–110. https://doi.org/10.2166/wst.2005.0440

    Article  CAS  Google Scholar 

  • Delanka-Pedige HMK, Munasinghe-Arachchige SP, Cornelius J, Henkanatte-Gedera SM, Tchinda D, Zhang Y, Nirmalakhandan N (2019) Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria. Algal Res 39:101423. https://doi.org/10.1016/j.algal.2019.101423

    Article  Google Scholar 

  • Delanka-Pedige HMK, Cheng X, Munasinghe-Arachchige SP, Bandara GLCL, Zhang Y, Xu P, Schaub T, Nirmalakhandan N (2020) Conventional vs. algal wastewater technologies: Reclamation of microbially safe water for agricultural reuse. Algal Res. https://doi.org/10.1016/j.algal.2020.102022

    Article  Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnol 11(1):45–52

  • Dobrowolski R, Krzyszczak A, Dobrzyńska J, Podkościelna B, Zięba E, Czemierska M, Jarosz-Wilkołazka A, Stefaniak EA (2019) Extracellular polymeric substances immobilized on microspheres for removal of heavy metals from aqueous environment. Biochem Eng J 143:202–211. https://doi.org/10.1016/j.bej.2019.01.004

    Article  CAS  Google Scholar 

  • El Hamouri B (2009) Rethinking natural, extensive systems for tertiary treatment purposes: the high-rate algae pond as an example. Desalin Water Treat 4:128–134. https://doi.org/10.5004/dwt.2009.367

    Article  Google Scholar 

  • Elshobary ME, El-Shenody RA, Ashour M, Zabed HM, Qi X (2020) Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. Food Biosci 35:100567

  • El Hamouri B, Khallayoune K, Bouzoubaa K, Rhallabi N, Chalabi M (1994) High-rate algal pond performances in faecal coliforms and helminth egg removals. Water Res 28:171–174. https://doi.org/10.1016/0043-1354(94)90131-7

    Article  Google Scholar 

  • Fallowfield HJ, Cromar NJ, Evison LM (1996) Coliform die-off rate constants in a high rate algal pond and the effect of operational and environmental variables. Water Sci Technol 34:141–147. https://doi.org/10.1016/S0273-1223(96)00831-1

    Article  CAS  Google Scholar 

  • Fallowfield HJ, Young P, Taylor MJ, Buchanan N, Cromar N, Keegan A, Monis P (2018) Independent validation and regulatory agency approval for high rate algal ponds to treat wastewater from rural communities. Environ Sci Water Res Technol 4:195–205. https://doi.org/10.1039/c7ew00228a

    Article  CAS  Google Scholar 

  • Foladori P, Petrini S, Andreottola G (2018) Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem Eng J 345:507–516. https://doi.org/10.1016/J.CEJ.2018.03.178

    Article  CAS  Google Scholar 

  • García M, Soto F, González JM, Bécares E (2008) A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecol Eng 32:238–243. https://doi.org/10.1016/j.ecoleng.2007.11.012

    Article  Google Scholar 

  • Gogoba AI, Matias-Peralta HM, Basri H, Nmaya MM (2017) Inhibitory effect of pigment extract from scenedesmus sp. on food spiked with foodborne staphylococcus aureus. J Clean WAS (JCleanWAS) 1(1):23–25

  • Godwin CM, Lashaway AR, Hietala DC, Savage PE, Cardinale BJ (2018) Biodiversity improves the ecological design of sustainable biofuel systems. GCB Bioenergy 10:752–765. https://doi.org/10.1111/gcbb.12524

    Article  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  • Gouveia JD, Lian J, Steinert G, Smidt H, Sipkema D, Wijffels RH, Barbosa MJ (2019) Associated bacteria of Botryococcus braunii (Chlorophyta). Peer J 7:e6610

  • Guo XP, Liu X, Niu ZS, Lu DP, Zhao S, Sun XL, Wu JY, Chen YR, Tou FY, Hou L, Liu M (2018) Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary China. Environ Pollut 242:576–584. https://doi.org/10.1016/j.envpol.2018.06.099

    Article  CAS  Google Scholar 

  • Guo MT, Yuan QB, Yang J (2013) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93:2864–2868. https://doi.org/10.1016/j.chemosphere.2013.08.068

    Article  CAS  Google Scholar 

  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Röder T, Nieuwenhuijse D, Pedersen SK, Kjeldgaard J, Kaas RS (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

    Article  Google Scholar 

  • Herrero M, Ibáñez E, Cifuentes A, Reglero G, Santoyo S (2006) Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J Food Prot 69(10):2471–2477

  • Hu X, Kang F, Yang B, Zhang W, Qin C, Gao Y (2019) Extracellular polymeric substances acting as a permeable barrier hinder the lateral transfer of antibiotic resistance genes. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.00736

    Article  Google Scholar 

  • Hwa K, Wolny J, Kase JA, Unno T, Pachepsky Y (2022) Interactions of E. coli with algae and aquatic vegetation in natural waters. Water Res 209:117952. https://doi.org/10.1016/j.watres.2021.117952

    Article  CAS  Google Scholar 

  • Inuwa AB, Mahmood Q, Iqbal J, Widemann E, Shafiq S, Irshad M, Irshad U, Iqbal A, Hafeez F, Nazir R (2022) Removal of antibiotic resistance genes, class 1 integrase gene and Escherichia coli indicator gene in a microalgae-based wastewater treatment system. Antibiotics 11(11):1531

    Article  CAS  Google Scholar 

  • Jyotirmayee P, Sachidananda D, Basanta KD (2014) Antibacterial activity of freshwater microalgae: a review. Afr J Pharm Pharmacol 8:809–818. https://doi.org/10.5897/ajpp2013.0002

    Article  Google Scholar 

  • Kang D, Kim K, Jang Y, Moon H, Ju D, Jahng D (2018) Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. Int Biodeterior Biodegrad 126:10–20. https://doi.org/10.1016/j.ibiod.2017.09.022

    Article  CAS  Google Scholar 

  • Kono M, Tanabe H, Ohmura Y, Satta Y, Terai Y (2017) Physical contact and carbon transfer between a lichenforming Trebouxia alga and a novel Alphaproteobacterium. Microbiology 163(5):678–691

  • Lee YJ, Lei Z (2019) Microalgal-bacterial aggregates for wastewater treatment: a mini-review. Bioresour Technol Rep 8:100199. https://doi.org/10.1016/j.biteb.2019.100199

    Article  Google Scholar 

  • Li D, Gao J, Dai H, Wang Z, Duan W (2020) Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system. Bioresour Technol 312:123567. https://doi.org/10.1016/j.biortech.2020.123567

    Article  CAS  Google Scholar 

  • Lindberg RH, Namazkar S, Lage S, Östman M, Gojkovic Z, Funk C, Gentili FG, Tysklind M (2021) Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129763

    Article  Google Scholar 

  • Liu L, Hall G, Champagne P (2016) Effects of environmental factors on the disinfection performance of a wastewater stabilization pond operated in a temperate climate. Water. https://doi.org/10.3390/w8010005

    Article  Google Scholar 

  • Liu X, Guo X, Liu Y, Lu S, Xi B, Zhang J, Wang Z, Bi B (2019) A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. Environ Pollut 254:112996. https://doi.org/10.1016/j.envpol.2019.112996

    Article  CAS  Google Scholar 

  • Lustigman B (1988) Comparison of antibiotic production from four ecotypes of the marine alga. Dunaliella Bull Environ Contam Toxicol 40:18–22. https://doi.org/10.1007/BF01689380

    Article  CAS  Google Scholar 

  • Maadane A, Merghoub N, El Mernissi N, Ainane T, Amzazi S, Wahby I, Bakri Y (2017) Antimicrobial activity of marine microalgae isolated from Moroccan coastlines. J Microbiol Biotechnol Food Sci 6(6):1257

  • Mambo PM, Westensee DK, Render DS, Cowan AK (2014) Operation of an integrated algae pond system for the treatment of municipal sewage: a South African case study. Water Sci Technol 69:2554–2561. https://doi.org/10.2166/wst.2014.187

    Article  CAS  Google Scholar 

  • Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42. https://doi.org/10.1016/j.jhazmat.2015.02.002

    Article  CAS  Google Scholar 

  • McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46:13393–13400. https://doi.org/10.1021/es303652q

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280. https://doi.org/10.1016/j.plantsci.2009.06.005

    Article  CAS  Google Scholar 

  • Munasinghe-Arachchige SP, Delanka-Pedige HMK, Henkanatte-Gedera SM, Tchinda D, Zhang Y, Nirmalakhandan N (2019) Factors contributing to bacteria inactivation in the Galdieria sulphuraria-based wastewater treatment system. Algal Res 38:101392. https://doi.org/10.1016/j.algal.2018.101392

    Article  Google Scholar 

  • Navarro F, Forján E, Vázquez M, Toimil A et al (2017) Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol Res 65(1):38–43

  • Naquin A, Shrestha A, Sherpa M, Nathaniel R, Boopathy R (2015) Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana. USA Bioresour Technol 188:79–83. https://doi.org/10.1016/j.biortech.2015.01.052

    Article  CAS  Google Scholar 

  • Naviner M, Bergé JP, Durand P, Le Bris H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174(1–2):15–24

  • Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH (2018) Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environ Sci Proc Impacts. 20(8):1089–1122. https://doi.org/10.1039/c8em00047f

    Article  CAS  Google Scholar 

  • Newby DT, Mathews TJ, Pate RC, Huesemann MH, Lane TW, Wahlen BD, Mandal S, Engler RK, Feris KP, Shurin JB (2016) Assessing the potential of polyculture to accelerate algal biofuel production. Algal Res 19:264–277. https://doi.org/10.1016/J.ALGAL.2016.09.004

    Article  Google Scholar 

  • Nirmalakhandan N, Selvaratnam T, Henkanatte-Gedera SM, Tchinda D, Abeysiriwardana-Arachchige ISA, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Zhang Y, Holguin FO, Lammers PJ (2019) Algal wastewater treatment: photoautotrophic vs. mixotrophic processes. Algal Res 41:101569. https://doi.org/10.1016/j.algal.2019.101569

    Article  Google Scholar 

  • Nnadozie CF, Odume ON (2019) Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes*. Environ Pollut 254:113067. https://doi.org/10.1016/j.envpol.2019.113067

    Article  CAS  Google Scholar 

  • Nõlvak H, Truu M, Oopkaup K, Kanger K, Krustok I, Nehrenheim E, Truu J (2018) Reduction of antibiotic resistome and integron-integrase genes in laboratory-scale photobioreactors treating municipal wastewater. Water Res 142:363–372. https://doi.org/10.1016/J.WATRES.2018.06.014

    Article  Google Scholar 

  • Nwoba EG, Vadiveloo A, Ogbonna CN, Ubi BE, Ogbonna JC, Moheimani NR (2020) Algal cultivation for treating wastewater in African developing countries: a review. Clean: Soil, Air, Water 48:1–14. https://doi.org/10.1002/clen.202000052

    Article  CAS  Google Scholar 

  • Ott A, O’Donnell G, Tran NH, Mohd Haniffah MR, Su JQ, Zealand AM, Gin KY, Goodson ML, Zhu YG, Graham DW (2021) Developing surrogate markers for predicting antibiotic resistance hot spots in rivers where limited data are available. Environ Sci Technol 55(11):7466–7478. https://doi.org/10.1021/acs.est.1c00939

    Article  CAS  Google Scholar 

  • Pagand P, Blancheton JP, Lemoalle J, Casellas C (2000) The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquac Res 31(10):729–736

  • Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE (2016) Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 92(6):fiw077

  • Pang N, Gu X, Chen S, Kirchhoff H, Lei H, Roje S (2019) Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew Sustain Energy Rev 112:450–460. https://doi.org/10.1016/j.rser.2019.06.001

    Article  CAS  Google Scholar 

  • Parhad NM, Rao NU (1974) Effect of pH on survival of Escherichia coli. J Water Pollut Control Fed 46:980–986

    Google Scholar 

  • Park JBK, Craggs RJ (2011) Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci Technol 63:2403–2410. https://doi.org/10.2166/wst.2011.200

    Article  CAS  Google Scholar 

  • Park Y, Je KW, Lee K, Jung SE, Choi TJ (2008) Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia 598:219–228

  • Park J, Park BS, Wang P, Patidar SK, Kim JH, Kim SH, Han MS (2017) Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in cocultivation system through mutualistic interaction. Front Plant Sci 8:289

  • Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:1–61. https://doi.org/10.1128/CMR.00088-17

    Article  Google Scholar 

  • Patil L, Kaliwal BB (2019) Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioproces Biosyst Eng 42(6):979–994

  • Penhaul Smith JK, Hughes AD, McEvoy L, Day JG (2020) Tailoring of the biochemical profiles of microalgae by employing mixotrophic cultivation. Bioresour Technol Rep 9:100321. https://doi.org/10.1016/j.biteb.2019.100321

    Article  Google Scholar 

  • Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J (1991) Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol 23(7–9):1535–1541

  • Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium bacillus sp. Strain RP1137. Appl Environ Microbiol 79:6093–60101. https://doi.org/10.1128/AEM.01496-13

    Article  CAS  Google Scholar 

  • Powell RJ, Hill RT (2014) Mechanism of algal aggregation by Bacillus sp. strain RP1137. Appl Environ Microbiol 80:4042–4050. https://doi.org/10.1128/AEM.00887-14

    Article  CAS  Google Scholar 

  • Pratt R, Mautner H, Gardner GM, Sha Y, Dufrenoy J (1951) Report on antibiotic activity of seaweed extracts. J Am Pharm Assoc Am Pharm Assoc Baltim 40:575–579. https://doi.org/10.1002/jps.3030401115

    Article  CAS  Google Scholar 

  • Reed RH (1997) Solar inactivation of faecal bacteria in water: The critical role of oxygen. Lett Appl Microbiol 24:276–280. https://doi.org/10.1046/j.1472-765X.1997.00130.x

    Article  CAS  Google Scholar 

  • Ren HY, Liu BF, Ma C, Zhao L, Ren NQ (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:1. https://doi.org/10.1186/1754-6834-6-143

    Article  CAS  Google Scholar 

  • Rivas MO, Vargas P, Riquelme CE (2010) Interactions of Botryococcus braunii cultures with bacterial biofilms. Microbial Ecol 60:628–635

  • Ruffell SE, Müller KM, McConkey BJ (2016) Comparative assessment of microalgal fatty acids as topical antibiotics. J Appl Phycol 28:1695–1704

  • Ruiz-Güereca DA., Licea-Navarro AF, del Pilar Sánchez-Saavedra M (2019) Evaluation of antimycobacterial activity from marine and freshwater microalgae. Revista de biología marina y oceanografía 54(1):82–90

  • Sandhya SV, Vijayan KK (2019) Symbiotic association among marine microalgae and bacterial flora: a study with special reference to commercially important Isochrysis galbana culture. J Appl Phycol 31:2259–2266

  • Santoyo S, Rodríguez-Meizoso I, Cifuentes A, Jaime L, Reina GGB, Señorans FJ, Ibáñez E (2009) Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT-Food Sci Technol 42(7):1213–1218

  • Schenk P, (2016) On-farm algal ponds to provide protein for northern cattle 364

  • Schumacher G, Sekoulov I (2003) Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm. Water Sci Technol 48:373–380. https://doi.org/10.2166/wst.2003.0143

    Article  CAS  Google Scholar 

  • Sebastian S, Nair KVK (1984) Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut Ser A Ecol Biol 34:197–206. https://doi.org/10.1016/0143-1471(84)90116-8

    Article  CAS  Google Scholar 

  • Senhorinho GNA, Ross GM, Scott JA (2015) Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia 54:271–282. https://doi.org/10.2216/14-092.1

    Article  Google Scholar 

  • Sforza E, Pastore M, Spagni A, Bertucco A (2018) Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Environ Sci Pollut Res 25:28004–28014. https://doi.org/10.1007/s11356-018-2834-0

    Article  CAS  Google Scholar 

  • Shah SH, Raja IA, Rizwan M, Rashid N, Mahmood Q, Shah FA, Pervez A (2018) Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renew Sustain Energy Rev 81:76–92. https://doi.org/10.1016/J.RSER.2017.07.044

    Article  Google Scholar 

  • Sharifah EN, Eguchi M (2011) The phytoplankton nannochloropsis oculata enhances the ability of roseobacter clade bacteria to inhibit the growth of fish pathogen vibrio anguillarum. PLoS ONE. https://doi.org/10.1371/journal.pone.0026756

    Article  Google Scholar 

  • Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L (2017) Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview. Chemosphere 180:396–411. https://doi.org/10.1016/j.chemosphere.2017.04.042

    Article  CAS  Google Scholar 

  • Sutherland DL, Turnbull MH, Craggs RJ (2017) Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Res 124:504–512

  • Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297. https://doi.org/10.1007/s10811-012-9863-8

    Article  CAS  Google Scholar 

  • Thomas PK, Dunn GP, Coats ER, Newby DT, Feris KP (2019) Algal diversity and traits predict biomass yield and grazing resistance in wastewater cultivation. J Appl Phycol. https://doi.org/10.1007/s10811-019-01764-2

    Article  Google Scholar 

  • Tohé J, Soto MA, Contreras S (1991) Removal of faecal coliform in high pH ponds using rapid growth alga biomass. Int J Environ Health Res 1:236–239. https://doi.org/10.1080/09603129109356724

    Article  Google Scholar 

  • Villa JA, Ray, EE, Barney BM (2014) Azotobacter vinelandii siderophore can provide nitrogen to support the culture of the green algae Neochloris oleoabundans and Scenedesmus sp. BA032. FEMS Microbiol Lett 351(1):70–77

  • Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, Saiki H, Tanaka H (2005) Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 51:187–196. https://doi.org/10.1016/j.femsec.2004.08.004

    Article  CAS  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004

    Article  CAS  Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44. https://doi.org/10.1016/j.tibtech.2017.09.003

    Article  CAS  Google Scholar 

  • Young P, Buchanan N, Fallowfield HJ (2016) Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. J Appl Microbiol 121:577–586. https://doi.org/10.1111/jam.13180

    Article  CAS  Google Scholar 

  • Zhang B, Lens PN, Shi W, Zhang R, Zhang Z, Guo Y, Bao X, Cui F (2018) The attachment potential and N-acyl-homoserine lactone-based quorum sensing in aerobic granular sludge and algal-bacterial granular sludge. Appl Microbiol Biotechnol 102:5343–5353

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Y, Zhou S, Jiang X, Ma X, Liu C (2018) Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants. Water Res 130:139–150. https://doi.org/10.1016/j.watres.2017.11.067

    Article  CAS  Google Scholar 

  • Zurano AS, Cárdenas JG, Serrano CG, Amaral MM, Acién-Fernández FG, Sevilla JF, Grima EM (2020) Year-long assessment of a pilot-scale thin-layer reactor for microalgae wastewater treatment. Variation in the microalgae-bacteria consortium and the impact of environmental conditions. Algal Res 50:101983. https://doi.org/10.1016/j.algal.2020.101983

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge COMSATS University Islamabad and The World Academy of Sciences for granting a joint Postgraduate PhD Fellowship to A. B. Inuwa.

Funding

The authors did not receive any financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. ABI conceptualized the study, conducted literature search and wrote the draft. AP and RN reviewed the draft. All authors read and approved the final draft of the manuscript.

Corresponding author

Correspondence to A. B. Inuwa.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interests to disclose.

Consent for publication

All authors have read and approved the final draft of the manuscript.

Additional information

Editorial responsibility: Binbin Huang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inuwa, A.B., Pervez, A. & Nazir, R. Microalgae-based wastewater treatment system: current state, antibiotic resistant bacteria and antibiotic resistance genes reduction potentials. Int. J. Environ. Sci. Technol. 20, 14053–14072 (2023). https://doi.org/10.1007/s13762-023-05069-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05069-3

Keywords

Navigation