Skip to main content

Advertisement

Log in

Spatiotemporal variation in macroinvertebrate community composition along the stressor gradients in rivers of a middle-eastern basin

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The study of community structure changes in relation to environmental gradients can help assessing and predicting community response to anthropogenic disturbances; however, such types of studies are rare in semi-arid regions. This study aimed at investigating the macroinvertebrate community composition in response to environmental variables in rivers of a semi-arid mountainous region, i.e., the Zagros mountain range, southwestern Iran. Environmental variables and macroinvertebrates were sampled at 54 sites in four seasons during 2018–2019. A total of 101 families of benthic macroinvertebrates from 8 classes and 21 orders were identified. Diversity and evenness indices showed significant temporal variation (p < 0.05). Also, taxa richness and Ephemeroptera, Plecoptera, and Trichoptera taxa showed strong seasonal stability, whereas spatial variation among all metrics was significantly different (p < 0.05). Taxa richness and density weekly correlated with altitudinal gradient. Correlation analysis, cluster analysis, non-metric multidimensional scaling, and canonical correspondence analysis demonstrated associations between community composition and environment variables, including definition of site groupings according to aggregated quality estimates. The results suggest that both physico-chemical variables of water (nitrate, total dissolved solids, Escherichia coli, temperature, chemical oxygen demand, and dissolved oxygen) and habitat structure (wetted river width, altitude, and riffles presence) determined the community composition of macroinvertebrates. Seasonal variation of community indices and community composition in our region seemed to differ from those estimated from subarctic, temperate and subtropical ecosystems. Our study provides a strong basis for further research, planning, and conservation of macroinvertebrate communities in the Karun River basin and similar river systems in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaspoor M, Javid A, Habibi A (2013) Determination of physical and chemical parameters of Khersan river water and study of its annual changes. Environ Sci Technol (Iran J) 15:1–11

    Google Scholar 

  • Afkhami M, Shariat M, Jaafarzadeh N et al (2007) Developing a water quality management model for Karun and Dez rivers. Iran J Environ Heal Sci Eng 4:99–106

    Google Scholar 

  • APHA (2017) Standard methods for the examination of water and wastewater, 23rd edn.

  • Bae MJ, Kwon Y, Hwang SJ et al (2011) Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Int J Limnol 47:91–105. https://doi.org/10.1051/limn/2011022

    Article  Google Scholar 

  • Bagherian Marzouni M, Mohammad A, Moazed H (2014) Evaluation of Karun River water quality scenarios using simulation model. Int J Adv Biol Biomed Res 2:339–358

    Google Scholar 

  • Bakhshipour Z, Asadi A, Sridharan A, Huat BBK (2019) Acid rain intrusion effects on the compressibility behaviour of residual soils. Environ Geotech 6:460–470. https://doi.org/10.1680/jenge.15.00081

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Environmental Protection Agency, Office of Water, Washington

    Google Scholar 

  • Beaty S (2013) The Ephemeroptera of North Carolina: A Biologist’s Handbook with Standard Taxonomic Effort Levels. North Carolina Department of Environment and Natural Resources, Carolina

  • Birmingham M, Heimdal D, Hubbard T, et al (2005) Benthic macroinvertebrate key acknowledgements. Lowater

  • Buck M, Woodley NE, Borkent A, et al (2009) Key to diptera families—adults. In: Brown B, Borkent A, et al (eds) Manual of Central American Diptera, 1st edn. NRC Research Press, Ottawa, Canada, pp 95–144

  • Bucker A, Sondermann M, Frede HG, Breuer L (2010) The influence of landuse on macroinvertebrate communities in montane tropical streams—a case study from Ecuador. Fundam Appl Limnol Hydrobiol 177:267–282. https://doi.org/10.1127/1863-9135/2010/0177-0267

    Article  Google Scholar 

  • Burgazzi G, Laini A, Ovaskainen O et al (2020) Communities in high definition: spatial and environmental factors shape the micro-distribution of aquatic invertebrates. Freshw Biol 65:2053–2065. https://doi.org/10.1111/fwb.13599

    Article  Google Scholar 

  • Chawaka SN, Boets P, Mereta STT et al (2018) Using macroinvertebrates and birds to assess the environmental status of wetlands across different climatic zones in Southwestern Ethiopia. Wetlands 38:653–665. https://doi.org/10.1007/s13157-018-1008-7

    Article  Google Scholar 

  • Chen SQ, Fath BD, Chen B (2011) Information-based network environment analysis: a system perspective for ecological risk assessment. Ecol Indic 11:1664–1672. https://doi.org/10.1016/j.ecolind.2011.04.013

    Article  Google Scholar 

  • Chen Q, Yang Q, Li R, Ma J (2013) Spring micro-distribution of macroinvertebrate in relation to hydro-environmental factors in the Lijiang river, china. J Hydro-Environ Res 7:103–112. https://doi.org/10.1016/j.jher.2012.03.003

    Article  Google Scholar 

  • Chessman B, Williams S, Besley C (2007) Bioassessment of streams with macroinvertebrates: effect of sampled habitat and taxonomic resolution. J North Am Benthol Soc 26:546–565. https://doi.org/10.1899/06-074.1

    Article  Google Scholar 

  • Chi S, Li S, Chen S et al (2017) Temporal variations in macroinvertebrate communities from the tributaries in the Three Gorges Reservoir Catchment, China. Chil Hist Nat 90:6. https://doi.org/10.1186/s40693-017-0069-y

    Article  Google Scholar 

  • Costa SS, Melo AS (2007) Beta diversity in stream macroinvertebrate assemblages: among-site and amongmicrohabitat components. Hydrobiologia 598:131–138. https://doi.org/10.1007/s10750-007-9145-7

    Article  Google Scholar 

  • Csercsa A, Krasznai-K E, Varbiro G et al (2019) Seasonal changes in relative contribution of environmental control and spatial structuring on different dispersal groups of stream macroinvertebrates. Hydrobiologia 828:101–115. https://doi.org/10.1007/s10750-018-3806-6

    Article  Google Scholar 

  • Davis AM, Pearson RG, Kneipp IJ et al (2015) Spatiotemporal variability and environmental determinants of invertebrate assemblage structure in an Australian dry-tropical river. Freshw Sci 34:634–647. https://doi.org/10.1086/681303

    Article  Google Scholar 

  • Dou P, Cui B, Xie T et al (2016) Macrobenthos diversity response to hydrological connectivity gradient. Wetlands 36:45–55. https://doi.org/10.1007/s13157-014-0580-8

    Article  Google Scholar 

  • Dube T, DeNecker L, van Vuren JHJ et al (2017) Spatial and temporal variation of invertebrate community structure in flood-controlled tropical floodplain wetlands. J Freshw Ecol 32:1–15. https://doi.org/10.1080/02705060.2016.1230562

    Article  CAS  Google Scholar 

  • Ebrahimi Dorche E, Fathi P, Esmaeili Ofogh A (2019) Wetland water quality assessment in cold and dry regions (Case study: Choghakhor wetland, Iran). Limnol Rev 19:57–75. https://doi.org/10.2478/limre-2019-0006

    Article  Google Scholar 

  • Elliott JM, Humpesch UH, Macan TT (1988) Larvae of the British Ephemeroptera: a key with ecological notes. Scientific Publication, Freshwater Biological Association, London

    Google Scholar 

  • Epler JH (1995) Identification manual for the larval Chironomidae (Diptera) of Florida. Department of Environmental Protection Division of Water Resource Management, Florida, Tallahassee

  • Epler JH (2010) The water beetles of Florida. Department of Environmental Protection Division of Environmental Assessment and Restoration, Florida, Tallahassee

  • Erseus C, Wetzel MJ, Gustavsson L (2008) ICZN rules—a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744:66–68

    Article  Google Scholar 

  • Fathi P, Ebrahimi Dorche E, Mirghafarry M, Esmaeili Ofogh A (2016) Water quality assessment in Choghakhor Wetland using water quality index (WQI). Iran J Fish Sci 15:508–523

    Google Scholar 

  • Gallardo B, Doledec S, Paillex A et al (2014) Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshw Biol 59:630–648. https://doi.org/10.1111/fwb.12292

    Article  Google Scholar 

  • Garzanti E, Al-Juboury AI, Zoleikhaei Y et al (2016) The Euphrates-Tigris-Karun river system: provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth-Sci Rev 162:107–128. https://doi.org/10.1016/j.earscirev.2016.09.009

    Article  CAS  Google Scholar 

  • Granda LD, Lock K, Goethals PLM (2011) Using multitarget clustering trees as a tool to predict biological water quality indices based on benthic macroinvertebrates and environmental parameters in the Chaguana watershed (Ecuador). Ecol Inform 6:303–308. https://doi.org/10.1016/j.ecoinf.2011.05.004

    Article  Google Scholar 

  • Halwas KL, Church M, Richardson JS (2005) Benthic assemblage variation among channel units in high-gradient streams on Vancouver Island, British Columbia. J North Am Benthol Soc 24:478–494. https://doi.org/10.1899/02-075.1

    Article  Google Scholar 

  • Heyns P (2005) Water conservation in arid and semi-arid regions. In: Water Resources Management. Department of Water Affairs, Namibia, p 10

  • Hulyal SB, Kaliwal BB (2009) Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur district, Karnataka State. Environ Monit Assess 153:45–59. https://doi.org/10.1007/s10661-008-0335-1

    Article  CAS  Google Scholar 

  • Hynes HBN (1984) A key to adult and nymphs of the british stoneflies (Plecoptera) with notes on the ecology and distribution. Scientific Publication, Freshwater Biological Association, London

    Google Scholar 

  • Jerrell JD (1991) Damselflies (Zygoptera): A Species Key to the Aquatic Larval Stages, Florida. Department of Environmental Regulation, Florida, Florida

  • Joao Feio M, Reynoldson TB, Graca MA (2006) Effect of seasonal changes on predictive model assessments of streams water quality with macroinvertebrates. Int Rev Hydrobiol 91:509–520. https://doi.org/10.1002/iroh.200610877

    Article  CAS  Google Scholar 

  • Joydas TV, Krishnakumar PK, Qurban MA (2011) Status of macrobenthic community of Manifa-Tanajib bay system of Saudi Arabia based on a once-off sampling event. Mar Pollut Bull 62:1249–1260. https://doi.org/10.1016/j.marpolbul.2011.03.012

    Article  CAS  Google Scholar 

  • Jun YC, Kim NY, Kim SH et al (2016) Spatial distribution of benthic macroinvertebrate assemblages in relation to environmental variables in Korean nationwide streams. Water (Switzerland) 8:1–20. https://doi.org/10.3390/w8010027

    Article  Google Scholar 

  • Jun YC, Kim NY, Kwon SJ, et al (2011) Effects of land use on benthic macroinvertebrate communities: comparison of two mountain streams in Korea. Ann Limnol Int J Limnol 47:35–49. https://doi.org/10.1051/LIMN/2011018

  • Khosravi M, Siadatmousavi SM, Yari S, Azizpour J (2017) Observation of currents in Karun River. Res Mar Sci 2:50–58

    Google Scholar 

  • Kohn AJ (1975) Ecological diversity. Wiley-Interscience Publication, London

    Google Scholar 

  • Koperski P (2010) Diversity of macrobenthos in lowland streams: Ecological determinants and taxonomic specificity. J Limnol 69:8. https://doi.org/10.3274/JL10-69-1-08

    Article  Google Scholar 

  • Krebs CJ (2001) Ecology: The experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. https://doi.org/10.1007/s004420100716

    Article  Google Scholar 

  • Leunda PM, Oscoz J, Miranda R, Ariño AH (2009) Longitudinal and seasonal variation of the benthic macroinvertebrate community and biotic indices in an undisturbed Pyrenean river. Ecol Indic 9:52–63. https://doi.org/10.1016/j.ecolind.2008.01.009

    Article  Google Scholar 

  • Li F, Chung N, Bae MJ et al (2012) Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshw Biol 57:2107–2124. https://doi.org/10.1111/j.1365-2427.2012.02854.x

    Article  Google Scholar 

  • Lounaci A, Brosse S, Thomas A, Lek S (2000) Abundance, diversity and community structure of macroinvertebrates in an Algerian stream: the Sébaou wadi. Ann Limnol 36:123–133. https://doi.org/10.1051/limn/2000008

    Article  Google Scholar 

  • Martien RF, Benke AC (1977) Distribution and production of two crustaceans in a wetland pond. Am Midl Nat 98:162–175

    Article  Google Scholar 

  • McCrary KJ (2011) Escherichia coli regrowth and macroinvertebrate health in urban and rural streams. Master's thesis, Texas A&M University

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. Mjm Software Design, Oregon, USA

  • McEwen H, Leff LG (2001) Colonization of stream macroinvertebrates by bacteria. Arch Fur Hydrobiol 151:51–65. https://doi.org/10.1127/archiv-hydrobiol/151/2001/51

    Article  Google Scholar 

  • Melo AS (2009) Explaining dissimilarities in macroinvertebrate assemblages among stream sites using environmental variables. Zoologia 26:79–84. https://doi.org/10.1590/S1984-46702009000100013

    Article  Google Scholar 

  • Mesa LM (2010) Hydraulic parameters and Longitudinal distribution of macroinvertebrates in a subtropical Andean basin. Interciencia 35:759–764

    Google Scholar 

  • Milligan MR (1997) Identification manual of the aquatic oligochaeta of Florida. Florida

  • Mollazadeh N (2014) Assessing the quality status of Marbar River using bioindicators and macrobenthos fauna. Sci Res Q Wetl Ecobiol (Iran J) 6:47–56

    Google Scholar 

  • Moodley L, Heip CHR, Middelburg JJ (1998) Benthic activity in sediments of the northwestern Adriatic Sea: sediment oxygen consumption, macro- and meiofauna dynamics. J Sea Res 40:263–280. https://doi.org/10.1016/S1385-1101(98)00026-4

    Article  Google Scholar 

  • Oldroyd H (1954) Handbooks for the identification of British Insects, Diptera: introduction and key to families. The Society and Sold at its Rooms, London

    Google Scholar 

  • Oscoz J, Galicia D, Miranda R (2011) Identification guide of freshwater macroinvertebrates of Spain. Springer, Dordrecht

    Book  Google Scholar 

  • Park YS, Song MY, Park YC et al (2007) Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecol Model 203:26–33. https://doi.org/10.1016/j.ecolmodel.2006.04.032

    Article  Google Scholar 

  • Park SR, Lee HJ, Lee SW, et al (2011) Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. Ann Limnol Int J Limnol 47:107–116. https://doi.org/10.1051/limn/2011023

  • Patterson RJ, Smokorowski KE (2011) Assessing the benefit of flow constraints on the drifting invertebrate community of a regulated river. River Res Appl 27:99–112. https://doi.org/10.1002/rra.1342

    Article  Google Scholar 

  • Pescador ML, Richard BA (2004) Guide to the mayfly Ephemeroptera nymphs of Florida. Florida Department of Environmental Protection, FL, USA

  • Pescador ML, Rasmussen AK, Richard BA, et al (2000) A guide to the stoneflies (Plecoptera) of Florida. Florida Department of Environmental Protection, Florida, USA

  • Pescador ML, Rasmussen AK, Harris SC (2004) Identification manual for the caddisfly (Trichoptera) larvae of florida. Florida Department of Environmental Protection, Florida, USA

  • Pirasteh S, Woodbridge K, Rizvi SMA (2009) Geo-information technology (GiT) and tectonic signatures: the River Karun & Dez, Zagros Orogen in south-west Iran. Int J Remote Sens 30:389–403. https://doi.org/10.1080/01431160802345693

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rai A, Shah DN, Shah RDT, Milner C (2019) Influence of environmental parameters on benthic macroinvertebrate assemblages in the headwaters of Bagmati river, Kathmandu valley. Nepal Banko Janakari 29:53–61. https://doi.org/10.3126/banko.v29i1.25155

    Article  Google Scholar 

  • Ramadass S, Abraham A (2013) Cluster analysis: an experimental study. Int J Comput Appl 64:32–36. https://doi.org/10.5120/10704-5622

    Article  Google Scholar 

  • Rao NVS (1989) Freshwater molluscs of India. The Director, Zoological Survey of India, Calcutta, Calcutta, India

  • Reece PF, Reynoldson TB, Richardson JS, Rosenberg DM (2001) Implications of seasonal variation for biomonitoring with predictive models in the Fraser River catchment, British Columbia. Can J Fish Aquat Sci 58:1411–1418. https://doi.org/10.1139/f01-076

    Article  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 94:849–873. https://doi.org/10.1111/brv.12480

    Article  Google Scholar 

  • Rezende RS, Santos AM, Henke-Oliveira C, Gonçalves J (2014) Effects of spatial and environmental factors on benthic a macroinvertebrate community. Zoologia 31:426–434. https://doi.org/10.1590/S1984-46702014005000001

    Article  Google Scholar 

  • Richardson JS (2003) Identification manual for the dragonfly larvae (Anisoptera) of Florida. 114

  • Rios-Touma B, Acosta R, Prat N (2014) The Andean biotic index (ABI): Revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev Biol Trop 62:249–273. https://doi.org/10.15517/rbt.v62i0.15791

  • Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Rosgen DL (1996) Applied river morphology. Wildland Hydrology. Pagosa Springs, CO

  • Salari M, Karimi A (2014) Qualitative classification of river water. Case study: Karun, Dev and Karkheh rivers. Environ Dev (Iran J) 5:29–38

    Google Scholar 

  • Scotti A, Jacobsen D, Tappeiner U, Bottarin R (2019) Spatial and temporal variation of benthic macroinvertebrate assemblages during the glacial melt season in an Italian glacier-fed stream. Hydrobiologia 827:123–139. https://doi.org/10.1007/s10750-018-3731-8

    Article  CAS  Google Scholar 

  • Shah RDT, Sharma S, Shah DN, Rijal D (2020) Structure of benthic macroinvertebrate communities in the rivers of Western Himalaya. Nepal Geosci 10:1–14. https://doi.org/10.3390/GEOSCIENCES10040150

    Article  Google Scholar 

  • Shearer KA, Hayes JW, Jowett IG, Olsen DA (2015) Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zeal J Mar Freshw Res 49:178–191. https://doi.org/10.1080/00288330.2014.988632

    Article  Google Scholar 

  • Sohrab A, Arjomand F (2010) Water quality index (WQI) of Karun river as an indicator of the effects of soap construction in Khorramshahr. Oceanol (Iran J) 1:21–27

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: Recent progress and future challenges. J North Am Benthol Soc 29:344–358. https://doi.org/10.1899/08-171.1

    Article  Google Scholar 

  • USEPA (2013) National Rivers and Streams Assessment. Field Operations Manual Wadeable, Washington

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW et al (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Washington HG (1984) Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Water Res 18:653–694. https://doi.org/10.1016/0043-1354(84)90164-7

    Article  Google Scholar 

  • William h. h (1979) Identification Manual of the Freshwater Clams of Florida. Department of Environmental Regulation, FL, USA

  • Williams DD, Feltmate BW (1992) Aquatic insects. CAB International

  • Woodbridge KP, Parsons DR, Heyvaert VMA et al (2016) Characteristics of direct human impacts on the rivers Karun and Dez in lowland south-west Iran and their interactions with earth surface movements. Quat Int 392:315–334. https://doi.org/10.1016/j.quaint.2015.10.088

    Article  Google Scholar 

  • Woodcock T, Mihuc T, Romanowicz E, Allen E (2006) Land-use effects on catchment- and patch-scale habitat and macroinvertebrate responses in the Adirondack uplands. Landsc Influ Stream Habitats Biol Assem 48:395–411

    Google Scholar 

  • Xliv V, Wright M, Peterson A (1944) A key to the genera of Anisopterous dragonfly nymphs of the United States and Canada (Odonata, Suborder Anisoptera). Ohio J Sci 44:151–166

    Google Scholar 

  • Yousefi S, Pourghasemi HR, Hooke J et al (2016) Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology 271:55–64. https://doi.org/10.1016/j.geomorph.2016.07.034

    Article  Google Scholar 

  • Yuan LL (2006) Estimation and application of macroinvertebrate tolerance values. Washington, DC

  • Zare Shahraki M, Ebrahimi Dorche E, Fathi P et al (2021) Defining a disturbance gradient in a middle-eastern river basin. Limnologica 91:125923. https://doi.org/10.1016/j.limno.2021.125923

    Article  Google Scholar 

  • Zhang Y, Zhang J, Wang L et al (2014) Influences of dispersal and local environmental factors on stream macroinvertebrate communities in Qinjiang River, Guangxi, China. Aquat Biol 20:185–194. https://doi.org/10.3354/ab00560

    Article  Google Scholar 

  • Zhang Q, Yang T, Wan X et al (2021) Community characteristics of benthic macroinvertebrates and identification of environmental driving factors in rivers in semi-arid areas: a case study of Wei River Basin, China. Ecol Indic 121:1–16. https://doi.org/10.1016/j.ecolind.2020.107153

    Article  Google Scholar 

  • Zhonghua REN, Fan LI, Jiali WEI et al (2016) Community characteristics of macrobenthos in the Huanghe (Yellow River) Estuary during water and sediment discharge regulation. Acta Ocean Sin 35:74–81. https://doi.org/10.1007/s13131-016-0881-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by the Swiss Leading House for South Asia and Iran (ZHAW) as a collaborative project between Isfahan University of Technology and SUPSI. We are grateful to Iranian Ministry of Energy, Iran Water and Power Resources Development Company and Department of Environment for their in-kind support. The authors also appreciate Mojgan Zare-Shahraki and Alireza Esmaeili for their assistance with field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ebrahimi-Dorche.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Editorial responsibility: Jing Chen.

Appendices

Appendix 1: List of benthic macroinvertebrates found in different sampling seasons across 54 sites in the Karun River basin

Class

Order

Family

Autumn

Winter

Spring

Summer

Arachnida

Trombidiformes

Feltriidae

+

+

+

  

Hygrobatidae

+

+

+

+

  

Lebertiidae

+

 

+

+

  

Limnocharidae

+

+

  

Sperchontidae

+

+

+

+

  

Torrenticolidae

+

+

+

+

  

Unionicolidae

+

  

Wettinidae

+

+

+

Insecta

Coleoptera

Curculionidae

+

  

Dryopidae

+

+

+

+

  

Dytiscidae

+

+

+

+

  

Elmidae

+

+

+

+

  

Gyrinidae

+

+

+

+

  

Haliplidae

+

  

Helophoridae

+

+

+

+

  

Hydraenidae

+

+

+

  

Hydrophilidae

+

+

+

+

  

Psephenidae

+

+

+

+

  

Staphylinidae

+

++

+

+

 

Collembola

Isotomidae

+

+

+

+

 

Diptera

Anthomyiidae

+

+

+

+

  

Athericidae

+

+

+

+

  

Blephariceridae

+

+

  

Ceratopogonidae

+

+

+

+

  

Chironomidae

+

+

+

+

  

Dixidae

+

+

  

Empididae

+

+

+

+

  

Ephydridae

+

+

+

+

  

Limoniidae

+

+

+

+

  

Psychodidae

+

+

+

+

  

Rhagionidae

+

+

  

Scathophagidae

+

+

+

  

Simuliidae

+

+

+

+

  

Stratiomyidae

+

+

+

+

  

Tabanidae

+

+

+

+

  

Tipulidae

+

+

+

+

  

Thaumaleidae

+

+

+

+

 

Ephemeroptera

Baetidae

+

+

+

+

  

Caenidae

+

+

+

+

  

Ephemerellidae

+

+

+

+

  

Heptageniidae

+

+

+

+

  

Isonychiidae

+

+

+

+

  

Leptophlebiidae

+

+

+

+

  

Neoephemeridae

+

+

+

  

Oligoneuriidae

+

+

+

+

  

Potamanthidae

+

+

+

+

  

Prosopistomatidae

+

+

+

+

 

Hemiptera

Corixidae

+

+

+

+

  

Mesoveliidae

+

+

+

+

  

Pleidae

+

+

+

 

Odonata

Aeshnidae

+

+

+

+

  

Calopterygidae

+

+

+

+

  

Coenagrionidae

+

+

  

Cordulegasteridae

+

+

  

Euphaeidae

+

+

+

  

Gomphidae

+

+

+

+

  

Lestidae

+

+

+

+

  

Libellulidae

+

+

+

  

Platycnemididae

+

+

+

+

 

Plecoptera

Capniidae

+

+

+

+

  

Leuctridae

+

+

+

+

  

Nemouridae

+

+

+

+

  

Perlidae

+

+

+

+

  

Perlodidae

+

+

+

+

  

Taeniopterygidae

+

 

Trichoptera

Brachycentridae

+

  

Ecnomidae

+

+

  

Hydropsychidae

+

+

+

+

  

Hydroptilidae

+

+

+

+

  

Leptoceridae

+

+

+

  

Limnephilidae

+

+

+

  

Philopotamidae

+

+

  

Polycentropodidae

+

+

+

+

  

Psychomyiidae

+

+

+

+

  

Rhyacophilidae

+

+

+

+

Bivalvia

Lamellibranchiata

Margaritiferidae

+

+

+

  

Sphaeriidae

+

+

+

+

  

Unionidae

+

+

Gastropoda

Prosobranchia

Bithyniidae

+

+

+

+

  

Hydrobiidae

+

+

+

+

  

Melanopsidae

+

+

+

  

Neritidae

+

+

+

+

  

Potamididae

+

+

+

+

  

Valvatidae

+

+

+

+

  

Viviparidae

+

+

+

+

 

Pulmonata

Lymnaeidae

+

+

+

+

  

Planorbidae

+

+

+

+

  

Physidae

+

+

+

+

  

Succineidae

+

+

+

+

Crustacea

Amphipoda

Gammaridae

+

+

+

+

 

Isopoda

Asellidae

+

+

+

+

Hirudinea

Arhynchobdellida

Erpobdellidae

+

+

+

+

 

Rhynchobdellida

Glossiphoniidae

+

+

+

+

  

Piscicolidae

+

Oligochaeta

Haplotaxida

Haplotaxidae

+

+

+

+

 

Lumbricida

Lumbricidae

+

+

+

+

 

Lumbriculida

Lumbriculidae

+

+

+

+

 

Tubificida

Naididae

+

+

+

+

  

Tubificidae

+

+

+

+

Turbellaria

Tricladida

Dugesiidae

+

+

+

+

  

Planariidae

+

Appendix 2: The abundance (A) and percentage of relative abundance (%RA) of Karun River basin’s benthic macroinvertebrates in different sampling seasons (total of 54 sites)

    

Family

Abbreviation

Autumn

Winter

Spring

Summer

  

A

%RA

A

%RA

A

%RA

A

%RA

Feltriidae

Felt

0

0

69

0.12

13

0.03

52

0.02

Hygrobatidae

Hygr

139

0.09

24

0.04

24

0.05

101

0.05

Lebertiidae

Lebe

403

0.25

93

0.16

51

0.10

439

0.20

Limnocharidae

Limno

34

0.02

0

0.0

0

0

26

0.01

Sperchontidae

Sper

414

0.26

56

0.09

89

0.18

615

0.27

Torrenticolidae

Torr

596

0.37

23

0.04

375

0.76

3585

1.60

Unionicolidae

Union

0

0

0

0

2

0.004

0

0

Wettinidae

Wett

102

0.06

72

0.12

39

0.08

0

0

Curculionidae

Curc

83

0.05

0

0

0

0

0

0

Dryopidae

Dryo

59

0.04

23

0.04

26

0.05

53

0.02

Dytiscidae

Dyti

62

0.04

43

0.07

26

0.05

59

0.03

Elmidae

Elmi

941

059

214

0.36

166

0.34

422

0.19

Gyrinidae

Gyri

146

0.09

24

0.04

17

0.03

60

0.03

Haliplidae

Hali

0

0

0

0

0

0

5

0.002

Helophoridae

Helop

21

0.01

84

0.14

21

0.04

32

0.01

Hydraenidae

Hydra

26

0.02

77

0.13

19

0.04

0

0

Hydrophilidae

Hydro

20

0.01

23

0.04

15

0.03

18

0.01

Psephenidae

Psep

47

0.03

32

0.05

21

0.04

43

0.02

Staphylinidae

Stap

45

0.03

127

0.21

22

0.04

30

0.01

Isotomidae

Isot

44

0.03

56

0.09

16

0.03

50

0.02

Anthomyiidae

Anth

60

0.04

105

0.18

22

0.04

35

0.02

Athericidae

Athe

51

0.03

61

0.10

40

0.08

25

0.01

Blephariceridae

Blep

0

0

0

0

103

0.21

142

0.06

Ceratopogonidae

Cera

161

0.10

45

0.08

314

0.64

39

0.02

Chironomidae

Chir

31,075

19.49

18,366

31.02

21,155

42.85

90,716

40.44

Dixidae

Dixi

0

0

327

0.55

102

0.21

0

0

Empididae

Empi

340

0.21

115

0.19

67

0.14

661

0.29

Ephydridae

Ephy

18

0.01

31

0.05

17

0.03

53

0.02

Limoniidae

Limo

1164

0.73

317

0.54

122

0.25

1503

0.67

Psychodidae

Psych

42

0.03

68

0.11

91

0.18

65

0.03

Rhagionidae

Rhag

0

0

28

0.05

55

0.11

0

0

Scathophagidae

Scat

23

0.01

124

0.21

141

0.29

0

0

Simuliidae

Simu

5662

3.55

3572

6.03

3488

7.07

16,363

7.29

Stratiomyidae

Stra

88

0.06

142

0.24

61

0.12

120

0.05

Tabanidae

Taba

509

0.32

230

0.39

128

0.26

590

0.26

Tipulidae

Tipu

110

0.07

126

0.21

38

0.08

21

0.01

Thaumaleidae

Thau

34

0.02

38

0.06

16

0.03

31

0.01

Baetidae

Baet

26,887

16.86

8274

13.97

4728

9.58

54,538

24.31

Caenidae

Caen

8355

5.24

694

1.17

3956

8.01

4230

1.89

Ephemerellidae

Ephe

466

0.29

214

0.36

399

0.81

1094

0.49

Heptageniidae

Hept

11,127

6.98

981

1.66

989

2

4782

2.13

Isonychiidae

Ison

333

0.21

326

0.55

120

0.24

481

0.21

Leptophlebiidae

Lept

341

0.21

44

0.07

203

0.41

514

0.23

Neoephemeridae

Neoe

0

0

828

1.40

424

0.86

259

0.12

Oligoneuriidae

Olig

2349

1.47

88

0.15

482

0.98

354

0.16

Potamanthidae

Potam

106

0.07

42

0.07

92

0.19

140

0.06

Prosopistomatidae

Pros

172

0.11

65

0.11

130

0.26

87

0.04

Corixidae

Cori

37

0.02

40

0.07

30

0.06

45

0.02

Mesoveliidae

Meso

61

0.04

46

0.08

21

0.04

89

0.04

Pleidae

Plei

0

0

30

0.05

11

0.02

21

0.01

Aeshnidae

Aesh

106

0.07

38

0.06

22

0.04

157

0.07

Calopterygidae

Calo

84

0.05

41

0.07

39

0.08

26

0.01

Coenagrionidae

Coen

68

0.04

0

0

55

0.11

0

0

Cordulegasteridae

Cord

39

0.02

0

0

0

0

43

0.02

Euphaeidae

Euph

33

0.02

26

0.04

14

0.03

0

0

Gomphidae

Gomp

53

0.03

37

0.06

38

0.08

41

0.02

Lestidae

Lest

41

0.03

51

0.09

21

0.04

20

0.01

Libellulidae

Libe

78

0.05

69

0.12

89

0.18

0

0

Platycnemididae

Plat

157

0.10

33

0.06

21

0.04

41

0.02

Capniidae

Capn

280

0.18

74

0.12

33

0.07

174

0.08

Leuctridae

Leuc

274

0.17

82

0.14

60

0.12

207

0.09

Nemouridae

Nemou

356

0.22

238

0.40

44

0.09

87

0.04

Perlidae

Perli

195

0.12

107

0.18

40

0.08

121

0.05

Perlodidae

Perlo

189

0.12

251

0.42

41

0.08

52

0.02

Taeniopterygidae

Taen

304

0.19

0

0

0

0

0

0

Brachycentridae

Brac

0

0

0

0

0

0

58

0.03

Ecnomidae

Ecno

86

0.05

0

0

0

0

57

0.03

Hydropsychidae

Hydrop

23,708

14.87

2978

5.03

1350

2.73

13,495

6.02

Hydroptilidae

Hydropt

86

0.05

85

0.14

40

0.08

123

0.05

Leptoceridae

Leptoc

189

0.12

34

0.06

24

0.05

0

0

Limnephilidae

Limn

0

0

260

0.44

31

0.06

84

0.04

Philopotamidae

Phil

572

0.36

0

0

0

0

58

0.03

Polycentropodidae

Poly

144

0.09

25

0.04

34

0.07

59

0.03

Psychomyiidae

Psyc

784

0.49

430

0.73

90

0.18

75

0.03

Rhyacophilidae

Rhya

164

0.10

99

0.17

53

0.11

89

0.04

Margaritiferidae

Marga

21

0.01

1

0

0

0

2

0

Sphaeriidae

Spha

570

0.36

1082

1.83

129

0.26

230

0.1

Unionidae

Unio

13

0.01

3

0.01

0

0

0

0

Bithyniidae

Bith

78

0.05

164

0.28

70

0.14

51

0.02

Hydrobiidae

Hydrob

213

0.13

91

0.15

40

0.08

21

0.01

Melanopsidae

Mela

28

0.02

24

0.04

15

0.03

0

0

Neritidae

Neri

179

0.11

77

0.13

47

0.10

137

0.06

Potamididae

Potami

40

0.03

59

0.10

20

0.04

31

0.01

Valvatidae

Valv

569

0.36

389

0.66

236

0.48

155

0.07

Viviparidae

Vivi

2329

1.46

1292

2.18

426

0.86

342

0.15

Lymnaeidae

Lymn

83

0.05

146

0.25

31

0.06

102

0.05

Planorbidae

Plano

153

0.10

149

0.25

220

0.45

141

0.06

Physidae

Phys

2562

1.61

1372

2.32

289

0.59

1622

0.72

Succineidae

Succ

106

0.07

63

0.11

36

0.07

35

0.02

Gammaridae

Gamm

13,660

8.57

2589

4.37

1388

2.81

13,459

6

Asellidae

Asel

35

0.02

51

0.09

24

0.05

62

0.03

Erpobdellidae

Erpo

986

0.62

739

1.25

275

0.56

992

0.44

Glossiphoniidae

Glos

276

0.17

91

0.15

36

0.07

116

0.05

Piscicolidae

Pisci

16

0.01

0

0

0

0

0

0

Haplotaxidae

Hapl

122

0.08

33

0.06

21

0.04

48

0.02

Lumbricidae

Lumbri

475

0.30

462

0.78

169

0.34

669

0.3

Lumbriculidae

Lumbcu

343

0.22

74

0.12

35

0.07

71

0.03

Naididae

Naid

7406

4.64

416

0.70

2020

4.09

5361

2.39

Tubificidae

Tubi

8006

5.02

8279

13.98

3018

6.11

2837

1.26

Dugesiidae

Duge

464

0.29

194

0.33

197

0.40

178

0.08

Planariidae

Plana

0

0

0

0

0

0

1

0.0004

Total means

-

159,476

100

59,205

100

49,368

100

224,318

100

Appendix 3: Cluster analysis of the benthic macroinvertebrate community structure (the abundance data of each season separately, a) Autumn, b) Winter, c) Spring and d) Summer) in the Karun River basin

figure a

Appendix 4: NMDS results of sampling sites based on the benthic macroinvertebrate community structure (relative abundance of each season separately), a) Autumn, b) Winter, c) Spring and d) Summer) in the Karun River basin. Abbreviations as in Appendix 2

figure b

Appendix 5: Biplot of the CCA on sampling sites and environmental variables (the data of each season separately, a) Autumn, b) Winter, c) Spring and d) Summer) in the Karun River basin. Significant environmental variables are represented by arrows. Abbreviations as in Table 1

figure c

Appendix 6: Biplot of the CCA on the benthic macroinvertebrates abundances and environmental variables (the data of each season separately, a) Autumn, b) Winter, c) Spring and d) Summer) in the Karun River basin. Significant environmental variables are represented by arrows. Abbreviations as in Table 1 and Appendix 2

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, P., Ebrahimi-Dorche, E., Beyraghdar-Kashkooli, O. et al. Spatiotemporal variation in macroinvertebrate community composition along the stressor gradients in rivers of a middle-eastern basin. Int. J. Environ. Sci. Technol. 19, 8587–8612 (2022). https://doi.org/10.1007/s13762-022-04094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04094-y

Keywords

Navigation