Skip to main content

Advertisement

Log in

Biochar and bioenergy production by pyrolysis of Conocarpus and Eucalyptus wastes: a case study, Khuzestan province, Iran

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the potential of simultaneous production of biochar and bioenergy from Conocarpus and Eucalyptus pruning wastes by pyrolysis process at isothermal conditions was investigated in order to manage these wastes and produce sustainable products. Pruning waste data were collected from different cities of Khuzestan province in Iran. The pyrolysis process increased the pH, CEC, EC, specific surface area, C/N ratio and the content of C, fixed C, N, Ca, Mg, K, P, Fe, Zn and ash, while reduced the bulk density, ratios O/C, H/C, (O + N)/C and (O + N + S)/C and the content of H, O, S, Cl, sulfate, bicarbonate and volatile matter. The annual potential for simultaneous production of biochars and electricity from Conocarpus and Eucalyptus pruning wastes by pyrolysis in Khuzestan province was estimated about 167,510 tones and 312 GWh, respectively. Findings suggest that biochar production from trees pruning waste by pyrolysis in Khuzestan province, in addition to reducing the disposal problems of these bulky wastes, can be considered as a promising method to produce soil remediation materials and renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

SPSS 22.

References

  • Afif RA, Anayah SS, Pfeifer C (2020) Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renew Energy 147(1):2250–2258

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Ahrenfeldt J, Thomsen TP, Clausen HU (2013) Biomass gasification cogeneration- a review of state of the art technology and near future perspectives. Appl Therm Eng 50(2):1407–1417

    Article  CAS  Google Scholar 

  • Allesina G, Pedrazzi S, Allegretti F, Morselli N, Puglia M, Santunione G, Tartarini P (2018) Gasification of cotton crop residues for combined power and biochar production in Mozambique. Appl Therm Eng 139:387–394

    Article  Google Scholar 

  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman A (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379

    Article  CAS  Google Scholar 

  • Al-Wabel M, Usman A, El-Naggar A, Aly A, Ibrahim E, Elmaghraby S, Al-Omran A (2015) Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci 22(4):503–511

    Article  CAS  Google Scholar 

  • Anonymous (2017) energy balance sheets of Iran. Iran ministry of energy. Electricity and energy affairs

  • Anonymous (2019) Agricultural yearbook of Iran. Ministry of agriculture- JAHAD, planning and economic affairs

  • Berihun T, Tadele M, Kebede F (2017) he application of biochar on soil acidity and other physico-chemical properties of soils in southern Ethiopia. J Plant Nutr Soil Sci 180(3):381–388

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, Paula Silva DP, Bass DM, Nys RD (2011) Algal biochar– production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  Google Scholar 

  • Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Sci 73(4):251–261

    Article  CAS  Google Scholar 

  • Calvelo Pereira R, Kaal J, Camps Arbestain M, Pardo Lorenzo R, Aitkenhead W, Hedley M, Macias F, Hindmarsh J, Macia-Agull JA (2011) Contribution tocharacterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42(11):1331–1342

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101(14):5222–5228

    Article  CAS  Google Scholar 

  • Caputo AC, Palumbo M, Pelagagge PM, Scacchia F (2005) Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy 28(1):35–51

    Article  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement, Biochar for Environmental Management. Science and Technology. Earthscan, London

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143. https://doi.org/10.1021/es8002684

    Article  CAS  Google Scholar 

  • Clare A, Shackley S, Joseph S, Hammond J, Pan G, Bloom A (2015) Competing uses for China’s straw: the economic and carbon abatement potential for biochar. GCB Bioenergy 7:1272–1282

    Article  CAS  Google Scholar 

  • Djousse Kanouo BM, Allaire SE, Munson AD (2018) Quality of biochars made from eucalyptus tree bark and corncob using a pilot-scale retort Kiln. Waste Biomass Valor 9:899–909. https://doi.org/10.1007/s12649-017-9884-2

    Article  CAS  Google Scholar 

  • Dowine A, Louise Cowie A, Van Zwieten L (2011) Biochar as a geoengineering climate solution: hazard identification and risk management. Crit Rev Environ Sci Technol 42(3):225–250

    Article  Google Scholar 

  • El-Naggar AH, Usman ARA, Al-Omran A, Ok SY, Ahmad M (2015) Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 138:67–73

    Article  CAS  Google Scholar 

  • Gaqa S, Mamphweli S, Katwire D, Meyer E (2014) The Properties and suitability of various biomass/coal blends for co-gasification purposes. J Sustain Bioenergy Syst 4:175–182

    Article  CAS  Google Scholar 

  • Githinji L (2014) Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch Agron Soil Sci 60(4):457–470

    Article  CAS  Google Scholar 

  • Githiomi JK, Kariuki JG (2010) Wood basic density of eucalyptus grandis from plantations in central Rift Valley, Kenya: variation with age, height level and between sapwood and heartwood. J Trop for Sci 22(3):281–286

    Google Scholar 

  • Hansena V, Hauggaard-Nielsenb H, Petersen C, Mikkelsen T, Muller-Stover D (2016) Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res 161:1–9

    Article  Google Scholar 

  • Hu X, Zhang X, Ngo HH, Guo W, Wen H, Li C, Zhang Y, Ma C (2020) Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci Total Environ 707:135544

    Article  CAS  Google Scholar 

  • Ibrahim HM, Al-Wabel MI, Usman ARA, Al-Omran A (2013) Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173

    Article  CAS  Google Scholar 

  • Ibrahim A, Usman ARA, Al-Wabel MI, Nadeem M, Ok YS, Al-Omran A (2017) Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: influence of particle size and application depth. Arch Agron Soil Scie 63(2):185–197

    Article  CAS  Google Scholar 

  • Jalali M (2005) Major ion chemistry in the Bahar area, Hamadan, western Iran. Environ Geol 47:763–772. https://doi.org/10.1007/s00254-004-1200-3

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Kaudal BB, Chen D, Madhavan DB, Downie A, Weatherley A (2015) Pyrolysis of urban waste streams: their potential use as horticultural media. J Anal Appl Pyrolysis 112:105–112

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lee M, Lin YL, Chiueh PT, Den W (2020) Environmental and energy assessment of biomass residues to biochar as fuel: a brief review with recommendations for future bioenergy systems. J Clean Prod 251:119714

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan publishing (eds), London

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt Strat Glob Change 11(2):395–419. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota e A review. Soil Biolo Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Li J, Li Q, Qian C, Wang X, Lan Y, Wang B, Yin W (2019a) Volatile organic compounds analysis and characterization on activated biochar prepared from rice husk. Int J Environ Sci Technol 16:7653–7662. https://doi.org/10.1007/s13762-019-02219-4

    Article  CAS  Google Scholar 

  • Li L, You S, Wange X (2019b) Optimal design of standalone hybrid renewable energy systems with biochar production in remote rural areas: a case study. Energy Procedia 158:688–693

    Article  Google Scholar 

  • Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ (2012) Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour Technol 121:235–240

    Article  CAS  Google Scholar 

  • Matovic D (2011) Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy 36(4):2011–2016

    Article  CAS  Google Scholar 

  • Mierzwa-Hersztek M, Gondek K, Jewiarz M, Dziedzic K (2019) Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J Mater Cycles Waste Manag 21:786–800. https://doi.org/10.1007/s10163-019-00832-6

    Article  CAS  Google Scholar 

  • Neves D, Thunman H, Matos A, Tarelho L, Gomez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci 37(5):611–630

    Article  CAS  Google Scholar 

  • Nguyen B, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:295–308. https://doi.org/10.1007/s10533-008-9220-9

    Article  CAS  Google Scholar 

  • Nguyen B, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44(9):3324–3331

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna MA, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Numbere AO (2020) Utilization of the mangrove forest for sustainable renewable energy production. Prog Petrochem Sci 3(3):324–329

    Article  Google Scholar 

  • Ozcimen D, Ersoy-Mericboyu A (2010) Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energy 35(6):1319–1324

    Article  CAS  Google Scholar 

  • Pedrazzi S, Santunione G, Minarelli A, Allesina G (2019) Energy and biochar co-production from municipal green waste gasification: a model applied to a landfill in the north of Italy. Energy Conver Manag 187:274–282

    Article  Google Scholar 

  • Pereira RG, Heinemann AB, Madari BE, Carvalho MTM, Kliemann HJ, Santos AP (2012) Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar. Soil Sci Pesq Agropec Bras 47(5):716–721

    Article  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci Discuss Eur Geosci Union 3(1):211–271

    Google Scholar 

  • Rafiq MK, Yanfu B, Aziz R, Rafiq MT, Masek S, Bachmann RT, Joseph S, Shahbaz M, Qayyum A, Zhanhuan S, Danaee M, Ruijun L (2020) Biochar amendment improves alpine meadows growth and soil health in Tibetan plateau over a three year period. Sci Total Environ 717:135296

    Article  CAS  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Reyes-Torres M, Oviedo-Ocana ER, Dominguez I, Komilis D, Sanchez AA (2018) systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Manag 77:486–499

    Article  CAS  Google Scholar 

  • Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115

    Article  CAS  Google Scholar 

  • Safieddin Ardebili SM, Asakereh A, Soleymani S (2020) An analysis of renewable electricity generation potential from municipal solid waste: a case study (Khuzestan Province, Iran). Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01011-6

    Article  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14(3):777–793

    Article  CAS  Google Scholar 

  • Shan J, Ji J, Yu Y, Xie Z, Yan X (2015) Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Sci Rep 5:16000. https://doi.org/10.1038/srep16000

    Article  CAS  Google Scholar 

  • Shang JG, Kong XR, He LL, Li WH, Liao QJH (2016) Low-cost biochar derived from herbal residue: characterization and application for ciprofloxacin adsorption. Int J Environ Sci Technol 13:2449–2458. https://doi.org/10.1007/s13762-016-1075-3

    Article  CAS  Google Scholar 

  • Shokrpuore S (2019) Study of the possibility of introducing Conocarpus tree as a bioenergy crop. Msc thesis. Shahid Chamran University of Ahvaz. Ahvaz

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48(7):516–525. https://doi.org/10.1071/SR10058

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) Chapter 2-a review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145

    Article  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Harttung T (2014) Biochar as a growing media additive and peat substitute. Solid Earth Discuss 6:1023–1035

    Google Scholar 

  • Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413

    Article  CAS  Google Scholar 

  • Tang J, Zhu W, Kookana K, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(1–3):432–441

    Article  CAS  Google Scholar 

  • Usman ARA, Al-wabel MI, Ok YS, Al-harbi A, Ahb-allah MW, El-naggar MH, Ahmd M, Al-Faraj A, Al-moran A (2016) Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 26(1):27–38

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9

    Article  CAS  Google Scholar 

  • Yang H, Sheng K (2012) Characterization of biochar properties affected by different pyrolysis temperatures using visible-near-infrared spectroscopy. International Scholarly Research Notices. ID 712837, 7 pages. https://www.hindawi.com/journals/isrn/2012/712837/

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shahid Chamran University of Ahvaz and the financial support of the Vice Chancellor for Research and Technology of Shahid Chamran University of Ahvaz in the form of a fund (SCU.AA98.29747).

Funding

This study was funded by Shahid Chamran University of Ahvaz.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Amir Hossein Wallikhani, Abbas Asakereh and Ahmad Farrokhian. The first draft of the manuscript was written by Abbas Asakereh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Asakereh.

Ethics declarations

Conflicts of interest

The authors declare they have no financial interests. The authors are members of the university faculty and do not receive any damages as university faculty members.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The participant has consented to the submission of the case report to the journal.

Ethics approval

The questionnaire and methodology for this study were approved by the Human Research Ethics committee of the Shahid Chamran University of Ahvaz.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallikhani, A.H., Asakereh, A. & Farrokhian Firouzi, A. Biochar and bioenergy production by pyrolysis of Conocarpus and Eucalyptus wastes: a case study, Khuzestan province, Iran. Int. J. Environ. Sci. Technol. 19, 5839–5848 (2022). https://doi.org/10.1007/s13762-021-03765-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03765-6

Keywords

Navigation