Skip to main content

Advertisement

Log in

Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Sediment contamination with polycyclic aromatic hydrocarbons represents a major environmental concern worldwide. The different remediation strategies proposed are mainly based on physico-chemical and biological approaches. Physico-chemical methods (also referred to as conventional methods), although more efficient in several cases, are considered as less sustainable as a result of their higher environmental and economic costs. Biotechnological methods on the other hand, which make use of microorganisms and/or their metabolic products, have received increased attention as a more environment friendly and less costly alternative, although usually more time consuming. The various biotechnological approaches developed and patented on bioremediation of sediments polluted with polycyclic aromatic hydrocarbons are presented in this review, as well as some soil bioremediation methods considered applicable to sediments. Patents on sediment microbial fuel cells and other electrokinetic approaches are also included as considerable advances have been made in this field. Over 150 patents dating from 1995 to 2019 were collected from Espacenet platform, a worldwide patent database and considered in the present review. Overall, this review highlighting strengths and weaknesses of the various biotechnological approaches developed and patented, so far, can be useful to address further studies to improve bioremediation performance and can represent a benchmark of information for bioremediation companies to identify and explore the most promising field applicable approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas SZ, Rafatullah M, Ismail N, Syakir MI (2017) A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res 41:1242–1264. https://doi.org/10.1002/er.3706

    Article  CAS  Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Adams K, Alibek K, Farmer S, Karathur K (2018) Microbial products and their use in bioremediation and to remove paraffin and other contaminating substances from oil and gas production and processing equipment. WO2018107162 (A1)

  • Ahn TY, Lee IG (2001) High molecular weight polycyclic aromatic hydrocarbon degrading bacteria for bioremediation of polycyclic aromatic hydrocarbon contaminated environment the method for preparation thereof and decomposing oil composition comprising the degrading bacteria. KR20010073276 (A)

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36. https://doi.org/10.1016/J.JCLEPRO.2014.08.009

    Article  CAS  Google Scholar 

  • Amato A, Beolchini F (2018) End of life liquid crystal displays recycling: a patent review. J Environ Manage 225:1–9. https://doi.org/10.1016/j.jenvman.2018.07.035

    Article  CAS  Google Scholar 

  • Amato A, Becci A, Beolchini F, Becci A, Beolchini F (2020) Critical reviews in biotechnology citric acid bioproduction : the technological innovation change. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2019.1709799

    Article  Google Scholar 

  • Ammami MT, Portet-Koltalo F, Benamar A, Duclairoir-Poc C, Wang H, Le Derf F (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:1–8. https://doi.org/10.1016/j.chemosphere.2014.12.087

    Article  CAS  Google Scholar 

  • An C, Zhen L, Gu J, Hu T, Lyu R, Liu C (2017) Multiple microorganisms for repairing petroleum-contaminated soil, fungicide, culturing and immobilization method and application. CN107129940(A)

  • Andreeva IS, Emel NE, Olkin SE, Repin VE, Reznikova IK, Zagrebelny SN (2005) Saccaromyces sp. and Pseudomonas sp. strain microorganisms, uses thereof as decomposers in bioremediation of oil-contaminated environmental objects and associations based on the same. RU2272071 (C2)

  • Angel J (2018) Composition and methods of use. US2018194654 (A1)

  • Archibugi D, Planta M (1996) Measuring technological change through patents and innovation surveys. Technovation 16:451–519. https://doi.org/10.1016/0166-4972(96)00031-4

    Article  Google Scholar 

  • Aydin S, Ince B, Ince O (2018) Method for bioremediation of petroleum-contaminated soils. WO2018164648 (A1)

  • Bass R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell : Use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473. https://doi.org/10.1016/j.electacta.2007.06.069

    Article  CAS  Google Scholar 

  • Bayat Z, Hassanshahian M, Cappello S (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J 9:48–54. https://doi.org/10.2174/1874285801509010048

    Article  CAS  Google Scholar 

  • Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74:1321–1326. https://doi.org/10.1016/j.chemosphere.2008.11.057

    Article  CAS  Google Scholar 

  • Birger JJ, Jensen VA, Birger J, Villumsen A (1995) Method and apparatus for the decontamination of products containing heavy metal. PCT/DK95/00209

  • Burtan L, Cioroianu TM, Dumitru M, Sîrbu CE (2017) Nutritive product to be used in bioremediation of soils polluted with petroleum products. RO131677(A)

  • Cai C, Xiong B, Zhang Y, Zhu Y (2015) Heavy metal resisting polycyclic aromatic hydrocarbon degrading bacteria, composition and application of heavy metal resisting polycyclic aromatic hydrocarbon degrading bacteria. CN104946568 (A)

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101. https://doi.org/10.1007/BF01570068

    Article  CAS  Google Scholar 

  • Chadwick DB, Wotawa-Bergen AQ, Kagan JA (2013) System for deploying fabric cloth in marine sediment. US8430601 (B1)

  • Chadwick DB, Arias-Thode YM, Higier A, Hsu L, Richter KE, Phipps AG, Anderson GW (2018) System and method for improving power production in linear array benthic microbial fuel cells. US2018097237 (A1)

  • Chang IS, An J (2012) Three electrode type of microbial fuel cell and a method for operating the same. US2012064416 (A1)

  • Chang YT, Lee JF, Liu KH, Liao YF, Yang V (2016) Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ Sci Pollut Res 23(5):4024–4035. https://doi.org/10.1007/s11356-015-4248-6

    Article  CAS  Google Scholar 

  • Chang IS, Kim BK, Lee YS, Hyun JK (2017) Sediment type microbial fuel cell. US2017162897 (A1)

  • Chen W, Huang Q, Li S, Wang F, Wang S (2014a) Sphingobacterium strain for degrading polycyclic aromatic hydrocarbon organic pollutant and application thereof. CN104046580

  • Chen W, Huang Q, Wang F, Li S, Wang S (2014b) Achromobacter sp. strain for degradation of polycyclic aromatic hydrocarbon organic pollutants and application thereof. CN104099266 (A)

  • Chen CY, Kuo YC, Yang PM, Chen PM., Hung WT, Huang CL, Kao CM, Wang SY (2016) Method for bioremediation of contaminated soils and contaminated groundwater. TW201619069 (A)

  • Chen C, Liu Q, Liu C, Yu J (2017) Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian. China Mar Pollut Bull 117:274–282. https://doi.org/10.1016/j.marpolbul.2017.02.004

    Article  CAS  Google Scholar 

  • Chen Q, Dong H, Duan D, He M, Hou D, Shi J, Wang L, Yu R, Zhang J, Zhang X, Zhu C, Zhu X (2018a) Petroleum degrading bacterium capable of degrading heavy crude oil as well as separation method and application of petroleum degrading bacterium. CN108949634 (A)

  • Chen K, Shi C, Wang K, Huang C, Cao X (2018b) Little bioremediation polluted soil earth device. CN207386156 (U)

  • Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, Zanaroli G, Petrangeli Papini M, Rossetti S, Aulenta F (2015) The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00881

    Article  Google Scholar 

  • Cruz Viggi C, Matturro B, Frascadore E, Insogna S, Mezzi A, Kaciulis S, Sherry A, Mejeha OK, Head IM, Vaiopoulou E, Rabaey K, Rossetti S, Aulenta F (2017) Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. Water Res 127:11–21. https://doi.org/10.1016/j.watres.2017.10.002

    Article  CAS  Google Scholar 

  • Dang Z, Li J, Guo C, He L, Yi X, Lu G, Yang C (2015) Microbial preparation, and preparation method and application thereof. CN104312944 (A)

  • Dell’Anno A, Beolchini F, Corinaldesi C, Amato A, Becci A, Rastelli E, Hekeu M, Regoli F, Astarita E, Greco S, Musco L, Danovaro R (2020) Assessing the efficiency and eco-sustainability of bioremediation strategies for the reclamation of highly contaminated marine sediments. Mar Environ Res 162:105101. https://doi.org/10.1016/j.marenvres.2020.105101

    Article  CAS  Google Scholar 

  • Ding P, Li L, Yang H, Zhang X (2017) Application of degrading bacterium capable of metabolizing various hydrocarbons to petroleum pollutant disposal. CN106315868 (A)

  • Dou J, Mengjiao M, Lirong C, Aizhong D, Lei Z, Shuairan, L, Hongting W (2012) Biodegradable perforated plate for adsorption and biodegradation of petroleum hydrocarbon pollutants as well as its preparation method. CN102408160 (A)

  • Dou J, Yuan J, Ding A, Xu X, Cheng L (2014a) Copolymer adsorption ball with enhanced biodegradation function against various organic pollutants and preparation process thereof. CN103611508 (A)

  • Dou J, Yuan J, Ding A, Xu X, Cheng L (2014b) Adsorption plate with high-efficient adsorption and enhanced biodegradation of petroleum hydrocarbon pollutants and preparation method thereof. CN103613208 (A)

  • Drake EN (2006) Bioremediation of hydrocarbon contaminated soils and water. MY121922 (A)

  • US EPA (2013) Use of amendments for in situ remediation at superfund sediment sites

  • Erofeevskaja LA, Gljaznetsova JS (2015) Biopreparation for bioremediation of oil-contaminated soils for climatic conditions of far north. RU2565549 (C2)

  • Fan J, Gao X, Ming H (2013) Method for screening and immobilizing efficient petroleum hydrocarbon degradation flora. CN103320346 (A)

  • Fan R, Ma W, Zhang H (2020) Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. Sci Total Environ 748:142463. https://doi.org/10.1016/j.scitotenv.2020.142463

    Article  CAS  Google Scholar 

  • Fernando EY, Keshavarz T, Kyazze G (2019) The use of bio-electrochemical systems in environmental remediation of xenobiotics: a review. J Chem Technol Biotechnol 94(7):2070–2080. https://doi.org/10.1002/jctb.5848

    Article  CAS  Google Scholar 

  • Foshtomi MY, Leliaert F, Derycke S, Willems A, Vincx M, Vanaverbeke J (2018) The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene. PLoS ONE 13(2):1–25. https://doi.org/10.1371/journal.pone.0192391

    Article  CAS  Google Scholar 

  • Franssen T, Franssen C (2018) Compositions and Methods for Cleaning Contaminated Solids and Liquids. US2018361444 (A1)

  • Fukunaga K, Takagi T, Muto H, Morita H, Shimooka T, Ichiki Y, Kurata S (2009) Bioremediation method. JP2009195821 (A)

  • Füssel J, Lücker S, Yilmaz P, Nowka B, Van Kessel MA, Bourceau P, Hach PF, Littmann S, Berg J, Spieck E, Daims H, Kuypers MM, Lam P (2017) Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci Adv 3:e1700807. https://doi.org/10.1126/sciadv.1700807

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118

    Article  CAS  Google Scholar 

  • Ganti S (2016) Bulk availability and production of bioremediation products. US2016017373 (A1)

  • Gao H, Cao H (2015) Bioremediation method of organic matter contaminated soil. CN104607460 (A)

  • Ghosh U, Luthy RG, States U, Cornelissen G, Werner D, Menzie CA (2011) In-situ sorbent amendments : a new direction in contaminated. Environ Sci Technol 45:1163–1168. https://doi.org/10.1021/es102694h

    Article  CAS  Google Scholar 

  • Gou Y, Zhao Q, Yang S, Wang H, Qiao P, Song Y, Cheng Y, Li P (2020) Removal of polycyclic aromatic hydrocarbons (PAHs) and the response of indigenous bacteria in highly contaminated aged soil after persulfate oxidation. Ecotoxicol Environ Saf 190:110092. https://doi.org/10.1016/j.ecoenv.2019.110092

    Article  CAS  Google Scholar 

  • Guo S, Wang S, Li G, Li F, Wu B, Cheng F (2018) Sealed thermal insulation type rotary bioreactor. CN108500058 (A)

  • Hamdan HZ, Salam DA (2020) Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation. Environ Pollut 263:114658. https://doi.org/10.1016/j.envpol.2020.114658

    Article  CAS  Google Scholar 

  • Hamdan HZ, Salam DA, Hari AR, Semerjian L, Saikaly P (2017) Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities. Sci Total Environ 575:1453–1461. https://doi.org/10.1016/j.scitotenv.2016.09.232

    Article  CAS  Google Scholar 

  • Haque N, Kwon S (2017) Nutrient dynamics study of overlying water affected by peroxide-treated sediment. J Ecol Nat 41:1–11. https://doi.org/10.1186/s41610-017-0046-z

    Article  Google Scholar 

  • Hendrickson ER, Jackson RE, Keeler SJ, Luckring AK, Perry M, Wolstenholme S (2010) Identification, characterization, and application of Thauera sp. Al9:8 useful in microbially enhanced oil recovery. CA2735944 (A1)

  • Hendrickson ER, Luckring AK, Keeler SJ, Perry MP, Choban ER (2015) Method of in situ bioremediation of hydrocarbon-contaminated sites using an enriched anaerobic steady state microbial consortium. US2010216219 (A1)

  • Hince EC (2007) Solid-chemical composition for the non-exothermic chemical oxidation and aerobic bioremediation of environmental contaminants. US7160483 (B1)

  • Hongqi W, Xuan W, Ying X, Qian W, Fei H (2011) Immobilized microspheres for remediation of petroleum contaminated soil, preparation method thereof and application thereof. CN102199589 (A)

  • Hongwen S, Wei X, Cuiping W, Haibin L (2012a) Novel electrokinetic intensified technology and process for biologically remedying polycyclic aromatic hydrocarbon polluted soil. CN102463254 (A)

  • Hongwen S, Wei X, Cuiping W, Zhiyuan Z (2012b) Novel process and technology for strengthening electric remediation and bioremediation of polycyclic aromatic hydrocarbon contaminated soil by using surfactant. CN102652955 (A)

  • Hou QY, Gao JS, Zhou F (2005) Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing. Surf Coatings Technol 194:238–243. https://doi.org/10.1016/j.surfcoat.2004.07.065

    Article  CAS  Google Scholar 

  • Hsu L, Liu WP, Chadwick DB, Kagan JA (2016) Microbial fuel cell with sediment agitator. US9484589 (B1)

  • Huang J, Chang Z (2018) Method for improving degradation performance of sediment microbial fuel cell. CN108996661 (A)

  • Hutchings TR, Leij FA, Wingate JR (2007) Charred biological material carrying microbes. GB2431926 (A)

  • Jeon CO, Jin HM, Kim JM, Lee HJ, Lee SH (2011) Microbial strain Alteromonas sp. SN2 for degrading polycyclic aromatic hydrocarbon. US2011129902

  • Ji L, Fang L, Jinsong L, Bo F (2011) Sphingobium yanoikuyae and application thereof in degrading polycyclic aromatic hydrocarbon. CN102120976 (A)

  • Ji Z, Jiang J, Li Y, Ren J, Ren X, Yang Q, Zhang H, Zhang X, Zhao M, Zhou L (2013) Arthrobacter strain highly effectively degrading phenanthrene, and application thereof. CN103215204 (A)

  • JIang B, Chao L, Zhi L, Wenlian L, Zhou J (2016) Method for ex-situ remediation of organic contaminated soil by virtue of sodium percarbonate-biological pile technique. CN105855287A

  • Jones M, Singleton I, Werner D, Jones M, Singleton I, Werner D (2008) Bioremediation method. WO2008012578 (A2)

  • Jorfi S, Rezaee A, Jaafarzadeh NA, Esrafili A, Akbari H, Ali G, Ali M (2014) Bioremediation of pyrene-contaminated soils using biosurfactant. Jentashapir J Health 5:e23228. https://doi.org/10.5812/jjhr.23228

    Article  Google Scholar 

  • Kalantary RR, Mohseni-Bandpi A, Esrafili A, Nasseri S, Ashmagh FR, Jorfi S, Ja’fari M, (2014) Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J Environ Heal Sci Eng 12:143. https://doi.org/10.1186/s40201-014-0143-1

    Article  CAS  Google Scholar 

  • Kawagoe H, Yoshida K, Kawame Y, Kubota K, Kubo M (2015) Contaminated soil remediation method. JP2015029982 (A)

  • Kim Y, Han KJ, Hong UJ, Kim YS, Han JH, Yang BC, Kim TS, Kim JY, Choi MZ, Lim JH (2014) Spray injection apparatus and method of gas and liquid mixtures containing microbial growth substrate and microbes for in situ bioremediation of contaminated ground water. KR101433257 (B1)

  • Kronenberg M, Trably E, Bernet N, Patureau D (2017) Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. Environ Pollut 231:509–523. https://doi.org/10.1016/j.envpol.2017.08.048

    Article  CAS  Google Scholar 

  • Kumar M, Singh MP, Kaur-Dua H, Kagdiyal V, Sarpal AS, Chhatwal VK, Malhotra RK, Kumar A (2010) Method for bioremediation of highly aromatic hydrocarbon wastes. US2010274069 (A1)

  • Lee JM, Lee SD, Chun JY (2017) The composition for contaminated soil remediation and in-situ bioremediation method using the same. KR20170016223 (A)

  • Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ (2018) Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut 241:254–264. https://doi.org/10.1016/j.envpol.2018.05.070

    Article  CAS  Google Scholar 

  • Li L (2015) Bioremediation method for petroleum-polluted soil. CN105170644 (A)

  • Li X, Li T (2015) Automatic control aeration system for strengthening both water and sediment purification based on electrochemistry. CN104787900 (A)

  • Li X, Xu J, Zhu L, Zheng Y, Zhang Z, Wang L, Fan Q (2015) Prosthetic devices of contaminated soil. CN204638709 (U)

  • Li J, Luo C, Li J, Zhang G (2016) Phenanthrene-degrading strain Acinetobacter tandoii LJ-5 and application thereof. CN105695360 (A)

  • Li Z, Li G, Zhang X, Yang B, Lei L, Zheng Z (2017) Electrochemical device for in-situ remediation of river channel bottom mud and method thereof. CN106299431 (A)

  • Li S, Zhou S, Huang Y (2018) Leaching agent used for restoration of petroleum hydrocarbon polluted soil and preparation and application thereof. CN108441223 (A)

  • Liang R, Xiong W (2019) Radiation-resistant Deinococcus actinosclerus capable of efficiently decomposing estrogen and polycyclic aromatic hydrocarbons and application thereof. CN109504618

  • Lin JE, Mueller JG, Pritchard PH (1995) Biocomposite comprising a microorganism and an additive in a formulation matrix for bioremediation and pollution control. WO9508513 (A1)

  • Lin JL, Huang DL, Shiu CH, Wu CS (2006) Local microbial formulation applied to the hydrocarbon pollutant treatment. TW200606253 (A)

  • Liu J, Bacosa HP, Liu Z (2017) Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the northern gulf of mexico. Front Microbiol 7:1–14. https://doi.org/10.3389/fmicb.2016.02131

    Article  Google Scholar 

  • Liu G, Zhong H, Liu Z (2018a) Advances in applications of rhamnolipids biosurfactant in environmental remediation : A review. Biotechnol Bioeng 115:796–814. https://doi.org/10.1002/bit.26517

    Article  CAS  Google Scholar 

  • Liu G, Chen D, Guan W, Liu Y (2018) Repair equipment of polluted soil earth. CN207308565 (U)

  • Lofrano G, Libralato G, Minetto D, De Gisi S, Todaro F, Conte B, Calabrò D, Quatraro L, Notarnicola M (2016) In situ remediation of contaminated marine sediment : an overview. Environ Sci Pollut Res 24:5189–5206. https://doi.org/10.1007/s11356-016-8281-x

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  Google Scholar 

  • Ma L, Zhan Y, Yu W, Tao X, He S, Song S, Xing J (2018) Petroleum aromatic hydrocarbon degradation yeast and application thereof. CN108130291 (A)

  • Mack DT (2011) Method and apparatus for bioremediation of soils and sediments. US2011207204 (A1)

  • Mackrell DA, Hutlet PA (2005) Method, process, apparatus, and product for remediation of hydrocarbon contamination. CA2495610 (A1)

  • Mai L, Bao LJ, Shi L, Liu LY, Zeng EY (2018) Polycyclic aromatic hydrocarbons affiliated with microplastics in surface waters of Bohai and Huanghai Seas. China Environ Pollut 241:834–840. https://doi.org/10.1016/j.envpol.2018.06.012

    Article  CAS  Google Scholar 

  • Mao J, Jing L, Deng Z (2013) Scopulariopsis brevicaulis and application thereof. CN103013841 (A)

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: Indissoluble ties with microorganisms. Trends Biotechnol 35:860–870. https://doi.org/10.1016/j.tibtech.2017.04.003

    Article  CAS  Google Scholar 

  • Matsumoto T, Junji N (2007) Method for purifying soil polluted by petroleum-based hydrocarbon. JP2007090245 (A)

  • Mcdonnell GP (2016) A remediation process. IE20160132 (A1)

  • Mcneilly FJ (2017) Method for assembly of a microbial fuel cell. US9660286 (B1)

  • Mercer K, Trevors JT (2011) Remediation of oil spills in temperate and tropical coastal marine environments. Environmentalist 31:338–347. https://doi.org/10.1007/s10669-011-9335-8

    Article  Google Scholar 

  • Micle V, Sur IM, Mitrea M (2018) Process for ex-situ bioremediation of hydrocarbon-polluted soils, using Pseudomonas And Bacillus microorganisms. RO132554 (A0)

  • Nealson KH, He Z (2010) Electricity generation using phototrophic microbial fuel cells. US2010196742 (A1)

  • Neustroev MM, Neustroev MP, Parnikova SI, Sazonov NN, Stepanova, AM, Tarabukina NP (2015) Oil-contaminated cryogenic soils bioremediation method. RU2538125 (C1)

  • O’driscoll K, Sambrotto R, Difilippo R, Piccillo P (2014) Bioremediation of persistent organic pollutants using thermophilic bacteria. US2014042087 (A1)

  • Park CH, Kim JH (2009) Liquid composition of microorganisms for bioremediation of hydrocarbon-contaminated soil, method of preparing the same, and bioremediation using the same. KR20090030897 (A)

  • Park CH, Woo SH, Kim JH (2008) Liquid composition of microorganisms for bioremediation of hydrocarbon-contaminated soil, method of preparing the same, and bioremediation using the same. KR20080046301 (A)

  • Peidong T, Zongqian G, Xiaojun L, Wan L, Chungui Z, Hairong Z (2012) Polycyclic aromatic hydrocarbon-degrading bacteria and its application. CN102732429 (A)

  • Penet C, Spears J, Lamb S, Iii L, Ballsieper JS, Allen J (2019) Microbe combinations for bioremediation and methods of using the same. WO2019118982 (A1)

  • Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89. https://doi.org/10.1016/J.JHAZMAT.2009.12.090

    Article  CAS  Google Scholar 

  • Pugachev VG, Repin VE, Totmenina OD, Tuljankin GM (2005) Destructor microorganism strains Zoogloea sp.14h, Arthrobacter sp.13h, Arthrobacter sp.15h, Bacillus sp.3h, Bacillus sp.12h, useful in remediation of ponds and soils contaminated with petroleum and petroleum product, and strain association based on the same. RU2266958 (C2)

  • Raddadi N, Giacomucci L, Totaro G, Fava F (2017) Marinobacter sp. from marine sediments produce highly stable surface - active agents for combatting marine oil spills. Microb Cell Fact 16:1–13. https://doi.org/10.1186/s12934-017-0797-3

    Article  CAS  Google Scholar 

  • Radu LE, Voina AL (2017) Biostimulator and process for bioremediation of soils polluted with mineral oils and other xenobiotic products. RO131717 (A2)

  • Randhawa KK, Rahman PK, Siemann-herzberg M (2014) Rhamnolipid biosurfactants — past, present, and future scenario of global market. Front Microbiol 5:1–7. https://doi.org/10.3389/fmicb.2014.00454

    Article  Google Scholar 

  • Reynolds K, Mciver G (2018) Methods for bioremediation of hydrocarbon contaminated media. US2018056346 (A1)

  • Rocchetti L, Amato A, Beolchini F (2018) Printed circuit board recycling: A patent review. J Clean Prod 178:814–832. https://doi.org/10.1016/j.jclepro.2018.01.076

    Article  CAS  Google Scholar 

  • Rojas C, Vargas IT, Bruns MA, Regan JM (2017) Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells. Bioelectrochemistry 118:139–146. https://doi.org/10.1016/j.bioelechem.2017.07.013

    Article  CAS  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, Van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525. https://doi.org/10.1038/nrmicro2163

    Article  CAS  Google Scholar 

  • Santoro C, Arbizzani C, Erable B (2017) Microbial fuel cells : From fundamentals to applications. A Rev J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  Google Scholar 

  • Shih YJ, Binh NT, Chen CW, Chen CF, Dong CD (2016) Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 150:294–303. https://doi.org/10.1016/j.chemosphere.2016.01.112

    Article  CAS  Google Scholar 

  • Shimada S, Koyama T, Imayasu E, Fukunaga K, Nishiyama H (2014) Original-position decontamination method by multi-point injection. JP2014205112 (A)

  • Shimada S, Oyama T, Imayasu E, Fukunaga K, Nishiyama H (2015) In situ purification method utilizing multi-point injection. TW201513948 (A)

  • Śmigielski K, Marchut-Mikołajczyk O, Polewczyk A, Antczak T (2014) Method for bioremediation of the land with the contaminated diesel oil. PL403931 (A1)

  • Smith DN, Sieczkowski MR, Wilke WH (2017) Bioremediation enhancing agents and methods of use. US2017232490 (A1)

  • Soda M, Tagawa D, Hashimoto H, Yoshida M (2016) Environmental clean-up capsule including environmental pollutant-degrading microorganisms. JP2016077176 (A)

  • Song YC, Woo JH (2015) Biostimulating agents for in-situ bioremediation of contaminanted sediment. KR20150111112 (A)

  • Sun R, Sun Y, Li QX, Zheng X, Luo X, Mai B (2018) Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment. Sci Total Environ 640:264–272. https://doi.org/10.1016/j.scitotenv.2018.05.320

    Article  CAS  Google Scholar 

  • Sutton NB, Grotenhuis JT, Langenhoff AA, Rijnaarts HH (2011) Efforts to improve coupled in situ chemical oxidation with bioremediation: A review of optimization strategies. J Soils Sediments 11:129–140. https://doi.org/10.1007/s11368-010-0272-9

    Article  CAS  Google Scholar 

  • Taneez M, Hurel C, Mady F, Francour P (2018) Capping of marine sediments with valuable industrial by-products : Evaluation of inorganic pollutants immobilization. Environ Pollut 239:714–721. https://doi.org/10.1016/j.envpol.2018.04.089

    Article  CAS  Google Scholar 

  • Tender LM (2012) Advanced apparatus for generating electrical power from aquatic sediment/water interfaces. WO2012082670 (A2)

  • Tokashiki T, Hirose M, Sakihama, H, Oshiro H, Hirata E, Kochi Y (2016) Bioremediation agent. JP2016064320 (A)

  • Tyagi M, Da Fonseca MM, De Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241. https://doi.org/10.1007/s10532-010-9394-4

    Article  CAS  Google Scholar 

  • Uphoff C (2007) Bioremediation of abandoned landfills and contaminated sites in soil, comprises inserting polycyclic aromatic hydrocarbon marker for labeling site in medium and hyphae-forming organism combined with material for bioremediation into medium. DE102005048904 (A1)

  • Wang D, Song T, Guo T, Zeng Q (2014) Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. Int J Hydrogen Energy 39:13224–13230. https://doi.org/10.1016/j.ijhydene.2014.06.141

    Article  CAS  Google Scholar 

  • Wang L, Tsang DC, Poon CS (2015a) Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere 122:257–264. https://doi.org/10.1016/J.CHEMOSPHERE.2014.11.071

    Article  CAS  Google Scholar 

  • Wang J, Wang S, Lou R (2015) Preparation method of modified anode of marine sediment microbial fuel cell. CN104466201 (A)

  • Wang C, Gu L, Ge S, Liu X, Zhang X, Chen X (2019) Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Technol 40:2345–2353. https://doi.org/10.1080/09593330.2018.1441328

    Article  CAS  Google Scholar 

  • Wu AC (2008) Downwash prcoess bioremediation system. US2008041776 (A1)

  • Xia W, Li J, Ye Z, Yang L, Gan M (2015) Device for bioremediation of petroleum-polluted sand beach. CN105036354 (A)

  • Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401. https://doi.org/10.1016/j.jhazmat.2010.07.038

    Article  CAS  Google Scholar 

  • Xu S, Zheng B, Lu A, Yang H, Zhou Y, Hu J (2014) Immobilized algal-bacterial symbiotic system for processing petroleum pollutants and application thereof. CN103849615 (A)

  • Xu J, Cui Y, Wang Q, Deng X (2016) Method capable of facilitating bioremediation of oil-contaminated soil. CN105363771 (A)

  • Yan Y, Shi Y, Ren L, Jia Y (2015) Pseudomonas stutzeri capable of simultaneously degrading chlorpyrifos and naphthalene. CN104388352 (A)

  • Yang YN, Wang Q (2015) Method for treating deep-sea spilled oils by using barophilic bacteria. CN104403947 (A)

  • Yang Q, Yang L (2018) Oil pollution collecting adsorbent, using method and application of recycling product thereof. CN108212109 (A)

  • Yang Y, Xia C, Xu M, Sun G, Guo J (2013) Sediment type microbial fuel cell. CN103401009 (A)

  • Yang Q, Liang H, Ma X, Sha S (2017) Sediment microbial fuel cell with adjustable movable pole plates. CN106898804 (A)

  • Yang C, Dang Z, Deng F, Sun G, Huang H, Guo C, Lu G, Yi X (2018) Microcapsule material capable of reducing pollution containing polycyclic aromatic hydrocarbon, and preparation method and application thereof. US2018243716 (A1)

  • Yanling M, Chao H, Yanpeng L, Weina K, Shuwen X, Fulin C (2018) Attenuated Pseudomonas aeruginosa genetically engineered bacteria as well as establishing method and application thereof. CN108795834 (A)

  • Yu C, Qi G, Yunxin H, Hui L, Shengkang L, Huixia S, Liang W, Shimei Y, Shengfeng Z (2010) Microbial inoculum for bioremediating coastline polluted by oil spilling and preparation method thereof. CN101717725 (A)

  • Zakaria Z, Yusoff AR (2012) In situ bio remediation of contaminated site. MY145799 (A)

  • Zhang F (2016) Composite inoculant for deep oil contaminated soil bioremediation process. CN106244479 (A)

  • Zhao G (2017) Microorganism solid microbial inoculum preparation facilities. CN206591127 (U)

  • Zhao Q, Xu X, Wu M (2013) Sediment in-situ treatment device and method utilizing microbial fuel cell. CN103224313 (A)

  • Zhen L, Ma Y, Liu J, Yang J, Zhang R (2016) Little bioremediation pollutes device of soil. CN205165344 (U)

  • Zhencheng S, Huiwe Z, Xinyu L, Xu L, Chenggang Z (2009a) Organic aromatic compound degrading bacteria and use thereof. CN101423806 (A)

  • Zhencheng S, Huiwen Z, Xinyu L, Xu L, Chenggang Z (2009b) Method for preparing polycyclic aromatic hydrocarbon degrading bacteria. CN101423807 (A)

  • Zheng L, Zhang Y, Gao W, Li Q, Han B, Cui Z, He C, Gao X, Luan X (2017) Petroleum pollution remedying immobilized microbial inoculum prepared from kelp residues. CN107151663 (A)

  • Zhengshun X, Yanliang N, Fenglan W, Xiaolin W, Zhaowei H, Menghua G, Rui J (2012) Pseudomonas aeruginosa and application thereof. CN102533589 (A)

  • Zhiqiang W (2016) A process for the bioremediation of hydrocarbons in contaminated soil or sediment. AU2016101966 (A4)

  • Zhong R, You J, Hu Z, Tang C (2017) It extracts and bioremediation device to be applied to circulation of organic contaminated site soil. CN206779142 (U)

  • Zhou S, Zhang L, Zhuang L, Wang Y (2012) Methods and devices for in-situ treatment of sediment simultaneous with microbial electricity generation. US2012276418 (A1)

  • Zhu Q, Zhang W, Zhong T, Yao F, Yang S (2018) Bioremediation method of organic matter contaminated soil. CN108746201 (A)

Download references

Acknowledgements

Part of the work has been realized thanks to staff exchange within the H2020-MSCA-RISE-2017 project e.THROUGH.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, MH and FB. The first draft of the manuscript was written by MH, AA, FB, AD and ABR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Amato.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beolchini, F., Hekeu, M., Amato, A. et al. Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review. Int. J. Environ. Sci. Technol. 19, 5697–5720 (2022). https://doi.org/10.1007/s13762-021-03504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03504-x

Keywords

Navigation