Skip to main content

Advertisement

Log in

A green algae Cladophora fracta for accumulation of toxic/harmful pollutants causing environmental pollution in mine gallery waters

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, the bioaccumulation of toxic/harmful pollutants (Fe, Pb, As, Cd, Cr, Ba, and Mn) by Cladophora fracta in mine gallery water was investigated. For this aim, the reactors planted with C. fracta were placed into mine gallery waters. Bioconcentration factor (BCF), metal pollution index (MPI), and accumulation capacity values were determined. According to the obtained results, the highest concentrations of Cr, Mn, Fe, Ba, Pb, Cd, and As were determined as 24.3 ± 1.2, 858 ± 27, 26,290 ± 87, 11.4 ± 0.6, 117.05 ± 5.8, 47.9 ± 1.4, and 2390.3 ± 11 mg/kg, respectively. BCF values were Fe > Pb > As > Cd > Cr > Ba > Mn. The MPI values of toxic/harmful pollutants according to days were determined as day 1 > 5 > 7 > 2 > 6 > 4 > 3, respectively. As a result, it was determined that C. fracta, which was placed in the mine gallery and exposed to the gallery waters, was effective in removing toxic/harmful pollutants. Therefore, C. fracta can be used as an alternative treatment material for the removal of toxic/harmful pollutants in mine gallery waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • BA, Bioaccumulation (2019) Bio-concentration criteria and chemical risk assessment. https://www.chemsafetypro.com/Topics/CRA/Bioconcentration_Factor_BCF.html. Accessed 20 Dec 2019

  • Badr OAM, EL-Shawaf IIS, El-Garhy HAS et al (2019) Antioxidant activity and phycoremediation ability of four cyanobacterial isolates obtained from a stressed aquatic system. Mol Phylogenetics Evolut 134:300–310

    Article  CAS  Google Scholar 

  • Bermanec V, Palinkaš LA, Fiket Z et al (2018) Interaction of acid mine drainage with biota in the Allchar Carlin-type As-Tl-Sb-Au deposit. Macedonia, J Geoche Explor 194:104–119

    Article  CAS  Google Scholar 

  • Bogner J, Pipatti R, Hashimoto S et al (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag Res 26:11–32

    Article  Google Scholar 

  • Brooks RR, Lee J, Reeves RD et al (1977) Detection of nickelif-erous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–77

    Article  CAS  Google Scholar 

  • Emparan Q, Harun R, Danquah MK (2019) Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res 17:889–915

    Article  Google Scholar 

  • Emparan Q, Jye YS, Danquah MK et al (2020) Cultivation of Nannochloropsis sp. microalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: Effect of microalgae cells with and without beads. J Water Process Eng 33:101043

    Article  Google Scholar 

  • Gunawardhana WDDH, Jayaweera MW, Kasturiarachchi JC (2002) Heavy metal levels of groundwater in Ratmalana Moratuwa industrial area: a comprehensive survey carried out in 2002. In: Proceedings of the eighth engineering research unit (ERU) symposium 2002, University of Moratuwa, Sri Lanka

  • Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56:190–200

    Article  CAS  Google Scholar 

  • Hilares RT, Atoche-Garay DF, Pagaza DAP et al (2021) Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: a critical review. J Environ Chem Eng 9(2):105174

    Article  Google Scholar 

  • Jamil T, Lias K, Norsila D et al (2014) Assessment of heavy metal contamination in squıd (Loligo Spp.) tissues of kedah-perlis waters, Malaysia. Malays J Anal Sci 18:195–203

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA et al (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manag 87(3):450–460

    Article  CAS  Google Scholar 

  • Khatiwada B, Hasan MT, Sun A et al (2020) Proteomic response of Euglena gracilis to heavy metal exposure—Identification of key proteins involved in heavy metal tolerance and accumulation. Algal Res 45:101764

    Article  Google Scholar 

  • Knauer K, Hemond H (2000) Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J Phycol 36:506–509

    Article  CAS  Google Scholar 

  • Lee Y-C, Chang S-P (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Biores Technol 102(9):5297–5304

    Article  CAS  Google Scholar 

  • Li Y, Huang H, Xu Z et al (2020) Mechanism study on manganese(II) removal from acid mine wastewater using red mud and its application to a lab-scale column. J Clean Prod 253:119955

    Article  CAS  Google Scholar 

  • Lin Z, Li J, Luan Y et al (2020) Application of algae for heavy metal adsorption: a 20-year meta-analysis. Ecotoxicol Environ Saf 1901:110089

    Article  Google Scholar 

  • Lόpez-Costas O, Kylander M, Mattielli N et al (2020) Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci Total Environ 71025:136319

    Article  Google Scholar 

  • Lu J, Liu Z, Wu Z et al (2020) Synergistic effects of binary surfactant mixtures in the removal of Cr(VI) from its aqueous solution by foam fractionation. Sep Purif Technol 237:116346

    Article  CAS  Google Scholar 

  • Lu Q, Xu Z, Xu X et al (2019a) Cadmium contamination in a soil-rice system and the associated health risk: An addressing concern caused by barium mining. Ecotoxicol Environ Saf 18315:109590

    Article  Google Scholar 

  • Lu Q, Xu X, Liang L et al (2019b) Barium concentration, phytoavailability, and risk assessment in soil-rice systems from an active barium mining region. Appl Geochem 106:142–148

    Article  CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N et al (2021) Integrating micro-algae into wastewater treatment: A review. Sci Total Environ 752:142168

    Article  CAS  Google Scholar 

  • Nair AT, Senthilnathan J, Shiva Nagendra SM (2019) Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. J Water Process Eng 28:322–330

    Article  Google Scholar 

  • Nguyen BT, Do DD, Nguyen TX et al (2020) Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Environ Pollut 256:113412

    Article  CAS  Google Scholar 

  • Niedermeier M, Gierlinger N, Lütz-Meindl U (2018) Biomineralization of strontium and barium contributes to detoxification in the freshwater alga Micrasterias. J Plant Physiol 230:80–91

    Article  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238(3):192–200

    Article  CAS  Google Scholar 

  • Park RM, Bena JF, Stayner LT, Smith RJ, Gibb HJ, Lees PSJ (2004) Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal 24:1099–1108

    Article  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Sánchez-Thomas R, García-García JD, Marín-Hernández A et al (2020) The intracellular water volume modulates the accumulation of cadmium in Euglena gracilis. Algal Res 46:101774

    Article  Google Scholar 

  • Simons J, van Beem AP (1990) Spirogyra species and accompanying algae from pools and ditches in The Netherlands. Aquat Bot 37:247–269

    Article  Google Scholar 

  • Singh NK, Raghubanshi AS, Upadhyay AK, Rai UN (2016) Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal. India, Ecotoxicol Environ Saf 130:224–233

    Article  CAS  Google Scholar 

  • Sood A, Renuka N, Prasanna R et al (2015) Cyanobacteria as potential options for wastewater treatment, Phytoremediation. Springer, Cham, pp 83–93

    Google Scholar 

  • Sunday ER, Uyi OJ, Caleb OO (2018) Phycoremediation: an eco-solution to environmental protection and sustainable remediation. J Chem Environ Biol Eng 2(01):5–10

    Article  Google Scholar 

  • SWQR (2012) Surface Water Quality Regulation 30.11.2012 date and official gazette no: 28483

  • Umamaheswari J, Shanthakumar S (2019) Phycoremediation of paddy-soaked wastewater by indigenous microalgae in open and closed culture system. J Environ Manage 24:435–443

    Article  Google Scholar 

  • Wan J, Gu J, Zhao Q, Liu Y (2016) COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Sci Rep 6:25054

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Xu PP, Liu C, Liu MS, Wang YL, Wang CH, Zhang CH, Ge Y (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Biotechnol 14:427–451

    Article  CAS  Google Scholar 

  • Whitton BA (1970) Biology of Cladophora in freshwaters. Water Res 4:457–476

    Article  Google Scholar 

  • Yang D, Wang L, Li Z et al (2020) Simultaneous adsorption of Cd (II) and As (III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci Total Environ 70815:134823

    Article  Google Scholar 

Download references

Acknowledgements

There is no acknowledgement for this manuscript.

Funding

No direct funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Topal.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topal, M., Arslan Topal, . . & Öbek, E. A green algae Cladophora fracta for accumulation of toxic/harmful pollutants causing environmental pollution in mine gallery waters. Int. J. Environ. Sci. Technol. 19, 4481–4490 (2022). https://doi.org/10.1007/s13762-021-03479-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03479-9

Keywords

Navigation