Skip to main content
Log in

Inhibition of bacterial growth using false yam (Icacina oliviformis) extract as an additive in liquid soap

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

False yam (Icacina oliviformis) is a drought-resistant root crop found in Northern Ghana. Research confirms it to contain some levels of antimicrobial, antifungal, antidiarrheal, antioxidant, and antidiabetic activities. This study was carried out to determine the effectiveness of False yam extracts incorporated in liquid soap against selected microorganisms. Polar solvent (methanol, ethanol, and water) extracts from the leaves, tuber (root), peels (root bark), and seeds were diluted with liquid soap to give concentrations of 50 mg/mL, 25 mg/mL, and 12.5 mg/mL. Test organisms used were Staphylococcus aureus, Escherichia coli, and Vibrio species. The results revealed significant differences (P < 0.05) among the different solvents and concentrations of the plant materials used. The ethanol seed extract at a concentration of 50 mg/mL was most inhibitive on Vibrio species with an inhibition diameter of 13 mm. The methanol peel extract also had the greatest inhibition on Escherichia coli with average inhibition zone of 7 mm to 12.5 mm followed closely by the tuber with maximum inhibition zone of 9 mm. The leaf extract generally exhibited higher values of inhibition on Staphylococcus aureus with zone range of 10 mm to 15 mm. The highest activity occurred with an inhibition zone of 15 mm diameter. The tuber and peel extracts recorded the highest antibacterial activity. Staphylococcus aureus appeared to be the most susceptible organism and the methanol extracts exhibited a relatively high frequency of inhibition. Further research efforts should combine the tuber and peel extracts to determine the possible synergistic and/or antagonistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abtahi H, Ghazavi A, Karimi M, Mollaghasemi S, Mosayebi G (2008) Antimicrobial activities of water and methanol extracts of Bitter Apricot seeds. J Med Sci 8:433–436

    Article  Google Scholar 

  • Akuodor GC, Udia PM, Bassey A, Chilaka KC, Okezie OA (2014) Antihyperglycemic and antihyperlipidemic properties of aqueous root extract of Icacina senegalensis in alloxan induced diabetic rats. J Acute Dis 3(2):99–103. https://doi.org/10.1016/S2221-6189(14)60025-1

    Article  Google Scholar 

  • Ansah T (2014) Nutrient composition and in vitro gas production of false yam. Glob J Anim Sci Res 2(2):76–82

    Google Scholar 

  • Ansah T, Aboagye C (2011) False yam (Icacina oliviformis) leaf meal as an ingredient in the diet of weaner rabbits (Oryctolagus cuncilus) to improve blood profile. Online J Anim Feed Res 1(4):135–138

    Google Scholar 

  • Aqil F, Ahmad I (2003) Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plants. World J Microbiol Biotechnol. https://doi.org/10.1023/A:1025128104056

    Article  Google Scholar 

  • Asuzu IU, Sosa S, Loggia DR (2015) The anti-inflammatory activity of Icacina trichantha tuber. Phytomedicine 6(4):267–272. https://doi.org/10.1016/S0944-7113(99)80019-1

    Article  Google Scholar 

  • Athar M, Nasir SM (2005) Taxonomic perspective of plant species yielding vegetable oils used in cosmetics and skin care products. Afr J Biotechnol 4(1):36–44

    Google Scholar 

  • Beuchat LR (1995) Pathogenic microorganisms associated with fresh produce. J Food Prot 59(2):204–216

    Article  Google Scholar 

  • Chalew ET, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarbon. J Am Water Resour Assoc 45(1):4–13

    Article  CAS  Google Scholar 

  • Cheeke PR (2001) Actual and potential application of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. Proc Am Soc Anim Sci

  • David-Oku E, Bassey SC, Obiajunwa-Otteh JI, Ekpenyong EU (2017) Comparative phytochemical and antimicrobial activities of polar solvents tuber extracts of Icacina senegalensis A. Juss (Icacinaceae). Med Res Arch 5(11):1–9

    Google Scholar 

  • Echo IA, Osuagwu AN, Agbor RB, Okpako EC, Ekanem BE (2012) Phytochemical composition of Aframomum melegueta and Piper guineense seeds. World J Appl Environ Chem 2(1):17–21

    Google Scholar 

  • Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4(7):685–688

    Article  CAS  Google Scholar 

  • Edoga MO (2009) Comparison of various fatty acid sources for making soft soap (Part 1): qualitative analysis. J Eng Appl Sci 4(2):110–113

    CAS  Google Scholar 

  • Field JA, Lettinga G (1992) Toxicity of tannic compounds to microorganisms. In: Hemingway RW, Laks PE (eds) Plant polyphenols. Springer, Boston, MA, pp 673–674

    Chapter  Google Scholar 

  • Glaser A (2004) The ubiquitous triclosan-A common antibacterial agent exposed. Pesticides You 24(3):12–17

    Google Scholar 

  • Guil-Guerrero JL, Ramos L, Moreno C, Zúñiga-Paredes JC, Carlosama-Yepez M, Ruales P (2016) Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livest Sci 189:32–49. https://doi.org/10.1016/j.livsci.2016.04.021

    Article  Google Scholar 

  • Hasan NA, Grim CJ, Lipp EK, Rivera ING, Chun J, Haley BJ, Taviani E (2015) Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species. https://doi.org/10.1073/pnas.1503928112

    Article  CAS  Google Scholar 

  • Kareru PG, Keriko JM, Kenji GM, Thiong’o GT, Gachanja AN, Mukiira HN (2010) Antimicrobial activities of skincare preparations from plant extracts. Afr J Traditional CAM 7(3):214–218

    CAS  Google Scholar 

  • Karsha PV, Lakshmi B (2010) Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. Indian J Nat Prod Resour 1(2):213–215

    Google Scholar 

  • Lehutso RF, Daso AP, Okonkwo JO (2017) Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerg Contam 3(3):107–114. https://doi.org/10.1016/j.emcon.2017.07.001

    Article  Google Scholar 

  • Loden M (2003) Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermato. https://doi.org/10.2165/00128071-200304110-00005

    Article  Google Scholar 

  • Miranda JM, Franco CM, Vazquez BI, Fente CA, Barros-Velazquez J, Cepeda A (2005) Evaluation of Chromocult enterococci agar for the isolation and selective enumeration of Enterococcus spp. in broilers. Lett Appl Microbiol 41(2):153–156

    Article  CAS  Google Scholar 

  • Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 31:247–256

    Google Scholar 

  • Obiajunwa-Otteh IJ, Akuodor GC, Onyekpe P, Umoh EU (2014) Phytochemical and antimicrobial potency of the aqueous and methanol leaf extracts of Icacina senegalensis. Pharmacologia 5(8):321–325

    Article  Google Scholar 

  • Pfeffer C, Oliver JD (2003) A comparison of thiosulphate-citrate-bile-salts-sucrose (TCBS) agar and thiosulphate-chloride-iodide (TCI) ager for the isolation of Vibrio species from estuarine environments. Lett Appl Microbiol 36(3):150–151

    Article  CAS  Google Scholar 

  • Premanath R, Sudisha J, Devi NL, Aradhya SM (2011) Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenumgraecum L.) leaves. Res J Med Plants 5(6):695–705. https://doi.org/10.3923/rjmp.2011.695.705

    Article  Google Scholar 

  • Rathee D, Rathee P, Rathee S, Rathee D (2012) Phytochemical screening and antimicrobial activity of Picrorrhiza kurroa, an Indian traditional plant used to treat chronic diarrhea. Arab J Chem 9:S1307–S1313. https://doi.org/10.1016/j.arabjc.2012.02.009

    Article  CAS  Google Scholar 

  • Sher A (2009) Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci 7(1):72–78

    Google Scholar 

  • Sherburne JJ, Anaya AM, Fernie KJ, Forbey JS, Furlong ET, Kolpin DW, Dufty AM, Kinney CA (2016) Occurrence of triclocarban and triclosan in an agro-ecosystem following application of biosolids. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b01834

    Article  Google Scholar 

  • Sorensen JPR, Lapworth DJ, Nkhuwa DCW, Stuart ME, Gooddy DC, Bell RA, Chirwa M, Kabika J, Liemisa M, Chibesa M, Pedley S (2014) Emerging contaminats in urban groundwater sources in Africa. Water Res 72:51–63

    Article  Google Scholar 

  • Stromberg J (2014) Five reasons why you should probably stop using antibacterial soap. Smithsonian Magazine

  • Strominger JL, Park JT, Thompson RE (1959) Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234(12):3263–3268

    Google Scholar 

  • Suller MTE, Russell AD (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 46:11–18

    Article  CAS  Google Scholar 

  • Timothy O, Idu M (2011) Preliminary phytochemistry and in vitro antimicrobial properties of aqueous and methanol extracts of Icacina trichantha Oliv. leaf. Int J Med Arom Plants 1(3):184–188

    Google Scholar 

  • Umoh EO (2013) Antinutritional factors of false yam (Icacina trichantha) flour. Internet J Food Saf 15:78–82

    Google Scholar 

  • Yadav M, Chatterji S, Gupta SK, Watal G (2014) Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Sci 6(5):539–542

    Google Scholar 

Download references

Acknowledgments

We are most grateful to Mr. Ofosu Asanti Aning and Mr. Yelkuro Mwintuana of CSIR-Savannah Agricultural Institute for assisting with the laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Amadu Baba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amadu Baba, N., Quainoo, A.K., Cobbina, S.J. et al. Inhibition of bacterial growth using false yam (Icacina oliviformis) extract as an additive in liquid soap. Int. J. Environ. Sci. Technol. 16, 7049–7058 (2019). https://doi.org/10.1007/s13762-019-02382-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02382-8

Keywords

Navigation