Skip to main content
Log in

Functionalized nanomaterials: a new avenue for mitigating environmental problems

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Recently, the environmental pollutions (air, water and soil) caused by the release of large amount of toxins, through extensive industrialization, have received a great attention by the environmental scientists. Thus, there is a serious need for efficient environmental remediation approaches. Recently, nanomaterials have obtained immense interest due to their enormous prospective in the environmental remediation. Researchers have developed biocompatible and safer tools for the development of nanomaterials. This review article is demonstrating that how different biocompatible nanomaterials are synthesized and used for the ecological remediation applications. Different schemes are explained for the synthesis of nanomaterials with high biocompatibility and their application in the field of environmental remediation. The use of various functional nanomaterials for the treatment of environmental pollutions (air, water and soil) is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted figure from Imagawa and Sun (2012) with permission from copyright (2012), American Chemical Society, (Washington, DC, USA)

Fig. 2

Adapted figure from Liu et al. (2014) with permission from copyright (2014), Elsevier, (Amsterdam, Netherlands)

Fig. 3

Adapted figure from Ren et al. (2018) with permission from copyright (2012), American Chemical Society, (Washington, DC, USA)

Fig. 4

Adapted figure from Chaudhary et al. (2016) with permission from copyright (2012), American Chemical Society, (Washington, DC, USA)

Fig. 5

Adapted figure from Zhang et al. (2016) with permission from copyright (2016), American Chemical Society, (Washington, DC, USA)

Fig. 6

Adapted figure from Wang et al. (2016) with permission from copyright (2016), American Chemical Society, (Washington, DC, USA)

Fig. 7

Adapted figure from Suematsu et al. (2015) with permission from copyright (2016), American Chemical Society, (Washington, DC, USA)

Fig. 8

Adapted figure from Umar et al. (2017) with permission from copyright (2017), Elsevier, (Amsterdam, Netherlands)

Fig. 9

Adapted figure from Zhao et al. (2018) with permission from copyright (2018), Elsevier, (Amsterdam, Netherlands)

Fig. 10

Adapted figure from Chaudhay et al. (2018) with permission from copyright (2018), Elsevier, (Amsterdam, Netherlands)

Fig. 11

Adapted figure from Chen et al. (2017) with permission from copyright (2017), American Chemical Society, (Washington, DC, USA)

Fig. 12

Adapted figure from Cheng et al. (2018) with permission from copyright (2018), American Chemical Society, (Washington, DC, USA)

Fig. 13

Adapted figure from Sharma et al. (2019) with permission from copyright (2019), Elsevier, (Amsterdam, Netherlands)

Fig. 14

Adapted figure from Hamidat et al. (2016) with permission from copyright (2016), American Chemical Society, (Washington, DC, USA)

Fig. 15

Adapted figure from Peng et al. (2017) with permission from copyright (2017), American Chemical Society, (Washington, DC, USA)

Fig. 16

Adapted figure from Real et al. (2016) with permission from copyright (2016), American Chemical Society, (Washington, DC, USA)

Similar content being viewed by others

References

  • Abdel Aal G, Atekwana EA, Werkema DD (2017) Complex conductivity response to silver nanoparticles in partially saturated sand columns. J Appl Geophys 137:73–81

    Article  Google Scholar 

  • Agnieszka B, Tomasz C, Jerzy W (2014) Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 23(7):1234–1244

    Article  CAS  Google Scholar 

  • An BL, Fu YH, Dai FZ, Xu JQ (2015) Platinum nanoparticle modified TiO2 nanorods with enhanced catalytic performances. J Alloys Compd 622:426–431

    Article  CAS  Google Scholar 

  • Arabpour N, Ejhieh AN (2016) Photodegradation of cotrimaxazole by clinoptilolite-supported nickel oxide. Process Saf Environ Prot 102:431–440

    Article  CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11

    Google Scholar 

  • Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83

    Article  CAS  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280

    Article  CAS  Google Scholar 

  • Bernal JD, Carlisle CH (1968) Fields of application of generalized crystallography. Kristallografiya 13(5):927–951

    CAS  Google Scholar 

  • Bernd N (2010) Pollution prevention and treatment using nanotechnology. In: Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Bhagya NP, Prashanth PA, Raveendra RS, Sathyanarayani S, Ananda S, Nagabhushana BM, Nagabhushana H (2016) Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: kinetic and isotherm studies. J Asian Ceram Soc 4(1):68–74

    Article  Google Scholar 

  • Bromberg L, Hatton TA (2007) Decomposition of toxic environmental contaminants by recyclable catalytic, superparamagnetic nanoparticles. Ind Eng Chem Res 46:3296–3303

    Article  CAS  Google Scholar 

  • Brown A, Eickhoff C, Reinders JEA, Raben I, Spruijt M, Neele F (2017a) Impacts: framework for risk assessment of CO2 transport and storage infrastructure. Energy Procedia 114:6501–6513

    Article  CAS  Google Scholar 

  • Brown DM, Okoro S, Van Gils J, Van Spanning R, Bonte M, Hutchings T, Linden O, Egbuche U, Bruun KB, Smith JWN (2017b) Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in niger delta soils. Sci Total Environ 596–597:284–292

    Article  CAS  Google Scholar 

  • Brunsting JH, McBean EA (2014) In Situ treatment of arsenic-contaminated groundwater by air sparging. J Contam Hydrol 159:20–35

    Article  CAS  Google Scholar 

  • Buoli M, Grassi S, Caldiroli A, Carnevali GS, Mucci F, Iodice S, Cantone L, Pergoli L, Bollati V (2018) Is there a link between air pollution and mental disorders? Environ Int 118:154–168

    Article  CAS  Google Scholar 

  • Cachada A, Rocha-Santos T, Duarte AC (2018) Soil and pollution. In: Soil pollution. Elsevier, pp 1–28

  • Chaudhary S, Sharma P, Renu KR (2016) Hydroxyapatite doped CeO2 nanoparticles: impact on biocompatibility and dye adsorption properties. RSC Adv 6:62797–62809

    Article  CAS  Google Scholar 

  • Chaudhay S, Kaur Y, Jayee B, Chaudhary GR, Umar A (2018) NiO nanodisks: highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna radiata and antibacterial properties. J Clean Prod 190:563–576

    Article  CAS  Google Scholar 

  • Chen Y, Wen X, Wang B, Nie P (2017a) Agricultural pollution and regulation: How to subsidize agriculture? J Clean Prod 164:258–264

    Article  Google Scholar 

  • Chen F, Gong AS, Zhu M, Chen G, Lacey SD, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L (2017b) Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282

    Article  CAS  Google Scholar 

  • Cheng XQ, Wang ZX, Guo J, Ma J, Shao L (2018) Designing multifunctional coatings for cost-effectively sustainable water remediation. ACS Sustain Chem Eng 6:1881–1890

    Article  CAS  Google Scholar 

  • Chia SL, Leong DT (2016) Reducing ZnO nanoparticles toxicity through silica coating. Heliyon 2(10):177–184

    Article  Google Scholar 

  • Choi CH, Yu S, Han IS, Kho BK, Kang DG, Lee HY, Seo MS, Kong JW, Kim G, Ahn JW (2016) Development and demonstration of pem fuel-cell-battery hybrid system for propulsion of tourist boat. Int J Hydrogen Energy 41(5):3591–3599

    Article  CAS  Google Scholar 

  • Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244

    Article  CAS  Google Scholar 

  • Crane RA, Dickinson M, Scott TB (2015) Nanoscale zero-valent iron particles for the remediation of plutonium and uranium contaminated solutions. Chem Eng J 262:319–325

    Article  CAS  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoaprticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  • Díaz EC, Pfeiffer C, Kastl L, Gil PR, Simonet B, Valcárcel M, Lamana JJ, Laborda F, Parak WJ (2013) The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part Part Syst Charact 30(12):1079–1085

    Article  CAS  Google Scholar 

  • Dong Y, Xing L, Hu F, Umar A, Wu X (2018) Efficient removal of organic dyes molecules by grain-like α-Fe2O3 nanostructures under visible light radiation. Vacuum 150:35–40

    Article  CAS  Google Scholar 

  • Dongliang L, Hao P, Deqing L (2017) Thermal conductivity enhancement of clathrate hydrate with nanoparticles. Int J Heat Mass Transf 104:566–573

    Article  CAS  Google Scholar 

  • Du W, Torresdey JL, Ji R, Yin Z, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes improved by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893

    Article  CAS  Google Scholar 

  • Dulal SMSI, Won MS, Shim YB (2010) Carbon fiber supported platinum nanoparticles for electrooxidation of methanol and phenol. J Alloys Compd 494(1–2):463–467

    Article  CAS  Google Scholar 

  • Earnhart D (2013) Water pollution from industrial sources. In: Encyclopedia of energy, natural resource, and environmental economics, Elsevier, pp 114–120

  • Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y (2017) The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged nps to Caco-2 and HepG2 cells. Chem Biol Interact 278:40–47

    Article  CAS  Google Scholar 

  • Frutos FJG, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813

    Article  CAS  Google Scholar 

  • Fu CC, Juang RS, Huq MM, Hsieh CT (2016) Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. J Taiwan Inst Chem Eng 67:338–345

    Article  CAS  Google Scholar 

  • Gan L, Li B, Guo M, Weng X, Wang T, Chen Z (2018) Mechanism for removing 2,4-dichlorophenol via adsorption and fenton-like oxidation using iron-based nanoparticles. Chemosphere 206:168–174

    Article  CAS  Google Scholar 

  • Gavina A, Antunes SC, Pinto G, Claro MT, Santos C, Gonçalves F, Pereira R (2013) Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils? PLoS ONE 8(4):e59748

    Article  CAS  Google Scholar 

  • George B, You D, Joy MS, Aleksunes LM (2017) Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 116:73–91

    Article  CAS  Google Scholar 

  • Gomes HI, Ottosen LM, Ribeiro AB, Ferreira CD (2015) Treatment of a suspension of pcb contaminated soil using iron nanoparticles and electric current. J Environ Manage 151:550–555

    Article  CAS  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Br J Plant Physiol 17(1):53–64

    Article  Google Scholar 

  • Hamidat M, Barakat M, Ortet P, Chaneac C, Rose J, Bottero JY, Heulin T, Achouak W, Santaella C (2016) Design defines the effects of nanoceria at a low dose on soil microbiota and the potentiation of impacts by the canola plant. Environ Sci Technol 50:6892–6901

    Article  CAS  Google Scholar 

  • Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246

    Article  CAS  Google Scholar 

  • Hess G (2014) Air pollution rule revived. Chem Eng News Arch 92(18):6

    Google Scholar 

  • Hinch N (1969) Air pollution. J Chem Educ 46(2):93–95

    Article  CAS  Google Scholar 

  • Hu Z, Beuret M, Khan H, Ariya AP (2014) Development of recyclable remediation system for gaseous BTEX: combination of iron oxides nanoparticles adsorbents and electrochemistry. ACS Sustain Chem Eng 2:2739–2747

    Article  CAS  Google Scholar 

  • Huang B, Xiao L, Yang LY, Ji R, Miao AJ (2016) Facile synthesis of 55Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology. Environ Pollut 213:801–808

    Article  CAS  Google Scholar 

  • Hughes DL, Afsar A, Laventine DM, Shaw EJ, Harwood LM, Hodson ME (2018) Metal removal from soil leachates using DTPA-functionalised maghemite nanoparticles, a potential soil washing technology. Chemosphere 209:480–488

    Article  CAS  Google Scholar 

  • Ibrahim AA, Kumar R, Umar A, Kim SH, Bumajdad A, Ansari AA, Baskoutas S (2016) Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and photocatalytic applications. Electrochim Acta 222:463–472

    Article  CAS  Google Scholar 

  • Imagawa H, Sun S (2012) Controlled synthesis of monodisperse CeO2 nanoplates developed from assembled nanoparticles. J Phys Chem C 116(4):2761–2765

    Article  CAS  Google Scholar 

  • Jiang X, Lu W, Hou Z, Zhao H, Na J (2015) Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites. Comput Geosci 84:37–45

    Article  CAS  Google Scholar 

  • Jorfi S, Maleki R, Jaafarzadeh N, Ahmadi M (2017) Pollution load index for heavy metals in Mian-Ab Plain soil, Khuzestan, Iran. Data Br 15:584–590

    Article  Google Scholar 

  • Kadu BS, Wani KD, Kaul-Ghanekar R, Chikate RC (2017) Degradation of doxorubicin to non-toxic metabolites using Fe–Ni bimetallic nanoparticles. Chem Eng J 325:715–724

    Article  CAS  Google Scholar 

  • Kansara K, Patel P, Shukla RK, Pandya A, Shanker R, Kumar A, Dhawan A (2018) Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomed 13:79–82

    Article  CAS  Google Scholar 

  • Kaur Y, Bhatia Y, Chaudhary S, Chaudhary GR (2017) Comparative performance of bare and functionalize ZnO nanoadsorbents for pesticide removal from aqueous solution. J Mol Liq 234:94–103

    Article  CAS  Google Scholar 

  • KhaliliFard J, Jafari S, Eghbal MAA (2015) Review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447–454

    Article  CAS  Google Scholar 

  • Kim HT, Kim C, Kim CD, Sohn SY (2017a) Effects of growth temperature on pyrite (FeS2) nanoparticles structural and optical properties. J Nanoelectron Optoelectron 12:594–597

    Article  CAS  Google Scholar 

  • Kim JW, Ki CS, Um IC, Park YHA (2017b) Facile fabrication method and the boosted adsorption and photodegradation activity of CuO nanoparticles synthesized using a silk fibroin template. J Ind Eng Chem 56:335–341

    Article  CAS  Google Scholar 

  • Klotz LO, Steinbrenner H (2017) Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol 13:646–654

    Article  CAS  Google Scholar 

  • Kumar B, Jalodia K, Kumar P, Gautam HK (2017a) Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 41:260–268

    Article  CAS  Google Scholar 

  • Kumar SK, Jiang SJ, Warchol JK (2017b) Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 2:6187–6200

    Article  CAS  Google Scholar 

  • Lago AD, Seijo AR, Vila ML, Couce A, Vega FA (2016) Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils. Sci Total Environ 571:1136–1146

    Article  CAS  Google Scholar 

  • Lee SH (2017) Magnetic characteristics of YBaCuO superconductor fabricated by melting process. J Nanoelectron Optoelectron 12:1013–1017

    Article  CAS  Google Scholar 

  • Li J, Zhou N, Song J, Fu L, Yan J, Tang Y, Wang H (2018a) Cu-MOF derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al-air battery. ACS Sustain Chem Eng 6:413–421

    Article  CAS  Google Scholar 

  • Li X, Liu Y, Zhang C, Wen T, Zhuang L, Wang X, Song G, Chen D, Ai Y, Hayat T (2018b) Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal Ions. Chem Eng J 336:241–252

    Article  CAS  Google Scholar 

  • Lian G, Zhang X, Si H, Wang J, Cui D, Wang Q (2013) Boron nitride ultrathin fibrous nanonets: one-step synthesis and applications for ultrafast adsorption for water treatment and selective filtration of nanoparticles. ACS Appl Mater Interfaces 5:12773–12778

    Article  CAS  Google Scholar 

  • Liu H, Su X, Duan C, Dong X, Zhou S, Zhu Z (2014) Microwave-assisted hydrothermal synthesis of Au NPs-graphene composites for H2O2 detection. J Electroanal Chem 731:36–42

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu G, Wang S, Gondal MA, Shen K, Xu Q (2019) Enhanced visible light photocatalytic performance of G-C3N4 photocatalysts Co-doped with gold and sulfur for degradation of persistent pollutant (Rhodamine B). J Nanosci Nanotechnol 19:713–720

    Article  CAS  Google Scholar 

  • Lv H, Su X, Wang Y, Dai Z, Liu M (2018) Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere 206:293–301

    Article  CAS  Google Scholar 

  • Ma F, Wu B, Zhang Q, Cui D, Liu Q, Peng C, Li F, Gu Q (2018) An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil. J Hazard Mater 344:742–748

    Article  CAS  Google Scholar 

  • Majhi SM, Naik GK, Lee HJ, Song HG, Lee CR, Lee IH, Yu YT (2018) Au@NiO Core-shell nanoparticles as a P-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens Actuator B Chem 268:223–231

    Article  CAS  Google Scholar 

  • Marisa I, Matozzo V, Martucci A, Franceschinis E, Brianese N, Marin MG (2018) Bioaccumulation and effects of titanium dioxide nanoparticles and bulk in the clam Ruditapes philippinarum. Mar Environ Res 136:179–189

    Article  CAS  Google Scholar 

  • Mikelonis AM, Lawler DF, Passalacqua P (2016) Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters. Sci Total Environ 566–567:368–377

    Article  CAS  Google Scholar 

  • Minet EP, Jahangir MMR, Krol DJ, Rochford N, Fenton O, Rooney D, Lanigan G, Forrestal PJ, Breslin C, Richards KG (2016) Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: a new effective and practical N2O mitigation measure for landspreading. Agric Ecosyst Environ 215:68–75

    Article  Google Scholar 

  • Miyazaki H, Kato JI, Sakamoto N, Wakiya N, Ota T, Suzuki H (2010) Synthesis of CeO2 nanoparticles by rapid thermal decomposition using microwave heating. Adv Appl Ceram 109(2):123–127

    Article  CAS  Google Scholar 

  • Morey GW (1953) Hydrothermal synthesis. J Am Ceram Soc 36(9):279–285

    Article  CAS  Google Scholar 

  • Nobles CJ, Schisterman EF, Ha S, Kim K, Mumford SL, Buck Louis GM, Chen Z, Liu D, Sherman S, Mendola P (2018) Ambient air pollution and semen quality. Environ Res 163:228–236

    Article  CAS  Google Scholar 

  • Nouri H, Chavoshi Borujeni S, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ Prot 107:94–107

    Article  CAS  Google Scholar 

  • Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179

    Google Scholar 

  • Ojewumi ME, Okeniyi JO, Ikotun JO, Okeniyi ET, Ejemen VA, Popoola API (2018) Bioremediation: data on pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data Br 19:101–113

    Article  Google Scholar 

  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol 246:110–122

    Article  CAS  Google Scholar 

  • Patra S, Roy E, Madhuri R, Sharma PK (2015) Fast and selective preconcentration of Europium from wastewater and coal soil by graphene oxide/silane@Fe3O4 dendritic nanostructure. Environ Sci Technol 49:6117–6126

    Article  CAS  Google Scholar 

  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J (2017) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917

    Article  CAS  Google Scholar 

  • Perrotta ML, Saielli G, Casella G, Macedonio F, Giorno L, Drioli E, Gugliuzza A (2017) An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Appl Mater Today 9:1–9

    Article  Google Scholar 

  • Pourgolmohammad B, Masoudpanah SM, Aboutalebi MR (2017) Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram Int 43(11):8262–8268

    Article  CAS  Google Scholar 

  • Qian Y, Zhang J, Zhang Y, Chen J, Zhou X (2016) Degradation of 2,4-dichlorophenol by nanoscale calcium peroxide: implication for groundwater remediation. Sep Purif Technol 166:222–229

    Article  CAS  Google Scholar 

  • Qu C, Shi W, Guo J, Fang B, Wang S, Giesy JP, Holm PE (2016) China’s soil pollution control: choices and challenges. Environ Sci Technol 50(24):13181–13183

    Article  CAS  Google Scholar 

  • Qu X, Yang R, Tong F, Zhao Y, Wang MH (2018) Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technol 330:259–265

    Article  CAS  Google Scholar 

  • Rai PK, Lee J, Kailasa SK, Kwon EE, Tsang YF, Ok YS, Kim KH (2018) A critical review of ferrate(VI)-based remediation of soil and groundwater. Environ Res 160:420–448

    Article  CAS  Google Scholar 

  • Rajendran K, Sen S (2018) Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ Nanotechnol Monit Manag 9:122–127

    Google Scholar 

  • Real AEP, Michel HC, Kaegi R, Sinnet B, Magnin V, Findling N, Villanova J, Carrière M, Santaella C, Martı́nez AF (2016) Fate of Ag–NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50(4):1759–1768

    Article  CAS  Google Scholar 

  • Ren T, Yang M, Wang K, Zhang Y, He J (2018) Cuo Nanoparticlescontaining highly transparent and superhydrophobic coating with extremely low bacterial adhesion and excellent bactericidal property. ACS Appl Mater Interfaces 10:25717–25725

    Article  CAS  Google Scholar 

  • Roby MC, SalasFernandez MG, Heaton EA, Miguez FE, VanLoocke A (2017) Biomass sorghum and maize have similar water-use-efficiency under non-drought conditions in the rain-fed midwest. USA Agric For Meteorol 247:434–444

    Article  Google Scholar 

  • Rocco C, Duro I, DiRosa S, Fagnano M, Fiorentino N, Vetromile A, Adamo P (2016) Composite versus discrete soil sampling in assessing soil pollution of agricultural sites affected by solid waste disposal. J Geochem Explor 170:30–38

    Article  CAS  Google Scholar 

  • Rosen AA (1967) Water pollution. Anal Chem 39(12):26–33

    Article  Google Scholar 

  • Schulman JH, Stoekenius W, Prince LM (1959) Mechanism of formation and structure of microemulsions by electron microscopy. J Phys Chem 63:1677–1680

    Article  CAS  Google Scholar 

  • Sharma P, Rohilla D, Chaudhary S, Kumar R, Singh AN (2019) Nanosorbent of hydroxyapatite for atrazine: a new approach for combating agricultural runoff. Sci Total Environ 663:264–273

    Article  CAS  Google Scholar 

  • Shi X, Tian A, You J, Yang H, Wang Y, Xue X (2018) Degradation of organic dyes by a new heterogeneous fenton reagent—Fe2GeS4 nanoparticle. J Hazard Mater 353:182–189

    Article  CAS  Google Scholar 

  • Simelane S, Ngila JC, Dlamini LN (2017) The Fate, behaviour and effect of WO3 nanoparticles on the functionality of an aerobic treatment unit. Environ Nanotechnol Monit Manag 8:199–208

    Google Scholar 

  • Singh Vig A, Gupta A, Pandey OP (2018) Efficient photodegradation of methylene blue (MB) under solar radiation by ZrC nanoparticles. Adv Powder Technol 29(9):2231–2242

    Article  CAS  Google Scholar 

  • Singh V, Tiwari A, Das M (2016) Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: a review. Fuel 173:90–97

    Article  CAS  Google Scholar 

  • Singh N, Umar A, Singh N, Fouad H, Alothman OY, Haque FZ (2018) Highly sensitive optical ammonia gas sensor based on Sn doped V2O5 nanoparticles. Mater Res Bull 108:266–274

    Article  CAS  Google Scholar 

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(1):13–21

    Article  Google Scholar 

  • Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D (2016) Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater 318:533–540

    Article  CAS  Google Scholar 

  • Su Y, Zhang Y, Ke H, McPherson G, He J, Zhang X, John VT (2017) Biopolymer stabilized iron loaded halloysite nanotubes. ACS Sustain Chem Eng 5:10976–10985

    Article  CAS  Google Scholar 

  • Suematsu K, Shin Y, Ma N, Oyama T, Sasaki M, Yuasa M, Kida T, Shimanoe K (2015) Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles. Anal Chem 87(16):8407–8415

    Article  CAS  Google Scholar 

  • Thomas VJ, Ramaswamy S (2016) Application of graphene and graphene compounds for environmental remediation. Sci Adv Mater 8(3):477–500

    Article  CAS  Google Scholar 

  • Umar A, Alshahrani AA, Algarni H, Kumar R (2017) CuO nanosheets as potential scaffolds for sensing applications. Sens Actuator B Chem 250:24–31

    Article  CAS  Google Scholar 

  • Umar A, Akhtar MS, Assiri MS, Al-Salami AE, Kim SH (2018) Composite CdO-ZnO hexagonal nanocones: efficient materials for photovoltaic and sensing applications. Ceram Int 44(5):5017–5024

    Article  CAS  Google Scholar 

  • Valente F, Bysell H, Simoni E, Boge L, Eriksson M, Martini A, Astolfi L (2018) Evaluation of toxicity of glycerol monooleate nanoparticles on PC12 cell line. Int J Pharm 539(1–2):23–30

    Article  CAS  Google Scholar 

  • Van Koetsem F, Woldetsadik GS, Folens K, Rinklebe J, Du Laing G (2018) Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability. Chemosphere 200:471–480

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517

    Article  CAS  Google Scholar 

  • Wang S, Zhao X, Yin X, Yu J, Ding B (2016) Electret ployvinylidene fluoride nanofibers hybridized ploytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8:23985–23994

    Article  CAS  Google Scholar 

  • Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG, Gadd GM (2017a) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

    Article  CAS  Google Scholar 

  • Wang S, Liu Z, Wang W, You H (2017b) Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater: a review. RSC Adv 7(59):37065–37075

    Article  CAS  Google Scholar 

  • Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70(3):521–524

    Article  CAS  Google Scholar 

  • Wilberforce T, El-Hassan Z, Khatib FN, Al Makky A, Baroutaji A, Carton JG, Olabi AG (2017) Developments of electric cars and fuel cell hydrogen electric cars. Int J Hydrogen Energy 42(40):25695–25734

    Article  CAS  Google Scholar 

  • Wilkinson EK, Palmberg L, Witasp E, Kupczyk M, Feliu N, Gerde P, Seisenbaeva AG, Fadeel B, Dahlen ES, Kessler GV (2011) Solution-engineered palladium nanoparticles: model for health effect studies of automotive particular pollution. ACS Nano 5:5312–5324

    Article  CAS  Google Scholar 

  • Wooding M, Rohwer ER, Naudé Y (2017) Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water. Anal Chim Acta 984:107–115

    Article  CAS  Google Scholar 

  • Xiao P, Kim JH, Seo S (2017) Simple fabrication of highly sensitive photodetectors using MoS2 nanoparticles and Ag nanowires. Sci Adv Mater 9:1626–1630

    Article  CAS  Google Scholar 

  • Xie W, Liang Q, Qian T, Zhao D (2015) Immobilization of selenite in soil and groundwater using stabilized Fe–Mn binary oxide nanoparticles. Water Res 70:485–494

    Article  CAS  Google Scholar 

  • Yang Z, Fang Z, Zheng L, Cheng W, Tsang PE, Fang J, Zhao D (2016) Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol Environ Saf 132:224–230

    Article  CAS  Google Scholar 

  • Yu K, Sheng GD, McCall W (2016) Cosovalent effects on dechlorination of soil sorbed polychlorinated biphenyls using bentonite clay-templated nanoscale zero valent iron. Environ Sci Technol 50:12949–12956

    Article  CAS  Google Scholar 

  • Zha J, Huang Y, Xia W, Xia Z, Liu C, Dong L, Liu L (2018) Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration. Fuel 229:241–247

    Article  CAS  Google Scholar 

  • Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018a) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99

    Article  CAS  Google Scholar 

  • Zhai P, Chen X, Zhang Z, Zhu L, Zhang H, Zhu W (2018b) Facile room-temperature coprecipitation of uniform barium chlorapatite nanoassemblies as a host photoluminescent material. Particuology 37:37–42

    Article  CAS  Google Scholar 

  • Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B (2016) Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc 138:5785–5788

    Article  CAS  Google Scholar 

  • Zhao R, Li K, Wang Z, Xing X, Wang Y (2018) Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. J Phys Chem Solids 112:43–49

    Article  CAS  Google Scholar 

  • Zhu J, Liu P (2017) Chitosan modified by polyacrylamide for adsorptive removal of tetracycline from wate water. J Nanoelectron Optoelectron 12:1186–1190

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation and accumulation of manufactured iron oxide NPs by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Priyanka Sharma is thankful to DST INSPIRE for SRF (IF 140267). Savita Chaudhary is thankful to DST Inspire Faculty award [IFACH-17] and DST Purse grants II for financial assistance and Rajeev Kumar is thankful to DST, SERB/F/8171/2015-16 and UGC (F. No. 194-2/2016 IC) for the financial support. Ahmad Umar acknowledges the Ministry of Higher Education, Saudi Arabia for granting Promising Centre for Sensors and Electronics Devices (PCSED) to Najran University, Saudi Arabia. The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Contributions

SC, PS, PC and AU have collected the literature and wrote the review. SC, AU and RK read, correct and revise the review.

Corresponding author

Correspondence to S. Chaudhary.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Editorial responsibility: Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Sharma, P., Chauhan, P. et al. Functionalized nanomaterials: a new avenue for mitigating environmental problems. Int. J. Environ. Sci. Technol. 16, 5331–5358 (2019). https://doi.org/10.1007/s13762-019-02253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02253-2

Keywords

Navigation