Skip to main content

Advertisement

Log in

Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Among different biofuel feedstocks, algal biodiesel is seen as a promising feedstock. Different research papers have assessed the sustainability of algal biofuel production, but it is always difficult to have a better sense of the results since comparing them with all the differences in data sources, life cycle assumptions, functional units and environmental metrics measured is difficult. The present study develops a comparative life cycle assessment of algal biofuel production under autotrophic and heterotrophic conditions with different inputs. SimaPro 8 was used considering five different scenarios for microalgae cultivation to compare environmental impacts, energy demand and damage analysis associated with water scarcity methodology. Open ponds with three different assumptions of using fresh water, recycled water and waste water, and photobioreactor and heterotrophic technologies are considered. Results were analyzed per energy basis—the functional unit of 1 MJ of energy produced. Results of total GHG emissions show that algae cultivated in pond with wastewater and heterotrophic culture are competitive with tradition fossil fuels. Also the use of algae as the source of energy might increase the energy demand, whereas it does not have adverse impact on the environment, health and climate. The results of the water scarcity indicator show the competiveness of algae oil. This study presents an overview of environmental impacts throughout the full life cycle of a product through different pathways in cultivation stage which demonstrates the importance of decision-making process for further investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abduli MA, Tavakolli H, Azari A (2013) Alternatives for solid waste management in Isfahan, Iran: a case study. Waste Manag Res 31:532–537

    Article  Google Scholar 

  • Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D (2015) Energy-input analysis of the life-cycle of microalgal cultivation systems and best scenario for oil-rich biomass production. Appl Energy 154:1082–1088

    Article  Google Scholar 

  • Arashiro LT, Montero N, Ferrer I, Acién FG, Gómez C, Garfí M (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622:1118–1130

    Article  CAS  Google Scholar 

  • Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Canter CE, Blowers P, Handler RM, Shonnard DR (2015) Implications of widespread algal biofuels production on macronutrient fertilizer supplies: nutrient demand and evaluation of potential alternate nutrient sources. Appl Energy 143:71–80

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426

    Article  CAS  Google Scholar 

  • Chen H, Wang J, Zheng Y, Zhan J, He C, Wang Q (2018a) Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Appl Energy 211:296–305

    Article  CAS  Google Scholar 

  • Chen Y, Xu C, Vaidyanathan S (2018b) Microalgae: a robust “green bio-bridge” between energy and environment. Crit Rev Biotechnol 38:351–368

    Article  CAS  Google Scholar 

  • Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111

    Article  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Biores Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Collotta M, Busi L, Champagne P, Romagnoli F, Tomasoni G, Mabee W, Alberti M (2017a) Comparative LCA of three alternative technologies for lipid extraction in biodiesel from microalgae production. Energy Procedia 113:244–250

    Article  CAS  Google Scholar 

  • Collotta M, Champagne P, Mabee W, Tomasoni G, Leite GB, Busi L, Alberti M (2017b) Comparative LCA of flocculation for the harvesting of microalgae for biofuels production. Procedia CIRP 61:756–760

    Article  Google Scholar 

  • Conkerton E, Wan P, Richard O (1995) Hexane and heptane as extraction solvents for cottonseed: a laboratory-scale study. J Am Oil Chem Soc 72:963–965

    Article  CAS  Google Scholar 

  • Deborah B, Jakob T, Wilhelm C (2017) The effect of climate change on the carbon balance between photosynthesis and respiration in planktonic and benthic microalgae. Book of Abstracts XIIth SCAR Biology Symposium, 10–14 July 2017. University of Groningen, Leuven, Belgium, p 300

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Dones R, Bauer C, Bolliger R, Burger B, Faist Emmenegger M, Frischknecht R, Heck T, Jungbluth N, Röder A, Tuchschmid M (2007) Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries. Final report ecoinvent data v2. 0, p 5

  • Elduque D, Javierre C, Pina C, Martínez E, Jiménez E (2014) Life cycle assessment of a domestic induction hob: electronic boards. J Clean Prod 76:74–84

    Article  Google Scholar 

  • Elgowainy A, Han J, Cai H, Wang M, Forman GS, Divita VB (2014) Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries. Environ Sci Technol 48:7612–7624

    Article  CAS  Google Scholar 

  • Ferreira AF, Ribeiro LA, Batista AP, Marques PA, Nobre BP, Palavra AM, da Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga-energy and CO2 emission and economic analyses. Biores Technol 138:235–244

    Article  CAS  Google Scholar 

  • Fortier M-OP, Roberts GW, Stagg-Williams SM, Sturm BS (2017) Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production. Algal Res 28:270–281

    Article  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, Herjolfsson G, Brynjolfsson S, Palsson BØ (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol 161:242–249

    Article  CAS  Google Scholar 

  • Gargiulo N, Shibata K, Peluso A, Aprea P, Valente T, Pezzotti G, Shiono T, Caputo D (2018) Reinventing rice husk ash: derived NaX zeolite as a high-performing CO2 adsorbent. Int J Environ Sci Technol 15:1543–1550

    Article  CAS  Google Scholar 

  • Goedkoop M, de Schryver A, Oele M, Durksz S, de Roest D (2008a) Introduction to LCA with SimaPro 7. PRé Consultants, The Netherlands

    Google Scholar 

  • Goedkoop M, Oele M, de Schryver A, Vieira M, Hegger S (2008b) SimaPro database manual methods library. PRé Consultants, The Netherlands, pp 22–25

    Google Scholar 

  • Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earth’s Future 5:278–284

    Article  Google Scholar 

  • Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR, Blowers P (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1:83–92

    Article  CAS  Google Scholar 

  • Handler RM, Shonnard DR, Kalnes TN, Lupton FS (2014) Life cycle assessment of algal biofuels: influence of feedstock cultivation systems and conversion platforms. Algal Res 4:105–115

    Article  Google Scholar 

  • Hosseinizand H, Lim CJ, Webb E, Sokhansanj S (2017) Economic analysis of drying microalgae Chlorella in a conveyor belt dryer with recycled heat from a power plant. Appl Therm Eng 124:525–532

    Article  Google Scholar 

  • Institute P. The world’s water [online]. http://www.worldwater.org/data.html. Accessed 18 Oct 2018

  • ISO I (2006) 14040: Environmental management-life cycle assessment-principles and framework. British Standards Institution, London

    Google Scholar 

  • ISO/TR (2000) 14049: Environmental management—Life cycle assessment—Examples of application of ISO 14041 to goal and scope definition and inventory analysis, International Organisation for Standardisation

  • Khoo H, Sharratt P, Das P, Balasubramanian R, Naraharisetti P, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Biores Technol 102:5800–5807

    Article  CAS  Google Scholar 

  • Kumar K, Mishra SK, Shrivastav A, Park MS, Yang J-W (2015) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sustain Energy Rev 51:875–885

    Article  CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington, DC

    Book  Google Scholar 

  • Leesing R, Kookkhunthod S (2011) Heterotrophic growth of Chlorella sp. KKU-S2 for lipid production using molasses as a carbon substrate. In: Proceedings of the international conference on food engineering and biotechnology, pp 87–91

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mathew DC (2014) Improving microalgae biofuel production: an engineering management approach. Ph.D dissertation edition. Cranfield university. http://dspace.lib.cranfield.ac.uk/handle/1826/9304

  • Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29

    Article  Google Scholar 

  • Ou X, Yan X, Zhang X, Zhang X (2013) Life-cycle energy use and greenhouse gas emissions analysis for bio-liquid jet fuel from open pond-based micro-algae under China conditions. Energies 6:4897–4923

    Article  CAS  Google Scholar 

  • Parsons S, Chuck C, Mcmanus M (2018) Microbial lipids: Progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils. J Clean Produc 172:661–672

    Article  CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Bashan Y (2015) Microalgal heterotrophic and mixotrophic culturing for bio-refining: From metabolic routes to techno-economics. Springer, Algal biorefineries

    Google Scholar 

  • Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Pérez-López P, Montazeri M, Feijoo G, Moreira MT, Eckelman MJ (2018) Integrating uncertainties to the combined environmental and economic assessment of algal biorefineries: a Monte Carlo approach. Sci Total Environ 626:762–775

    Article  CAS  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Biores Technol 102:17–25

    Article  CAS  Google Scholar 

  • Posadas E, Alcántara C, García-Encina P, Gouveia L, Guieysse B, Norvill Z, Acién F, Markou G, Congestri R, Koreiviene J (2018) Microalgae cultivation in wastewater. Elsevier, Microalgae-Based Biofuels and Bioproducts

    Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Biores Technol 184:444–452

    Article  CAS  Google Scholar 

  • Quinn JC, Smith TG, Downes CM, Quinn C (2014) Microalgae to biofuels lifecycle assessment—multiple pathway evaluation. Algal Res 4:116–122

    Article  Google Scholar 

  • Radaelli G, Fleischer D (2014) Systems and methods for extracting lipids from wet algal biomass. Google Patents

  • Rasoul-Amini S, Montazeri-Najafabady N, Mobasher MA, Hoseini-Alhashemi S, Ghasemi Y (2011) Chlorella sp.: a new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor. Appl Energy 88:3354–3356

    Article  CAS  Google Scholar 

  • Razon LF (2011) Net energy calculations for production of biodiesel and biogas from haematococcus pluvialis and nannochloropsis sp. Zero-carbon Energy Kyoto 2010. Springer, Berlin

    Google Scholar 

  • Reske J, Siebrecht J, Hazebroek J (1997) Triacylglycerol composition and structure in genetically modified sunflower and soybean oils. J Am Oil Chem Soc 74:989–998

    Article  CAS  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. Biotechnology and applied phycology, Handbook of microalgal culture, pp 125–177

    Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change 20:113–120

    Article  Google Scholar 

  • Rillo E, Gandiglio M, Lanzini A, Bobba S, Santarelli M, Blengini G (2017) Life cycle assessment (LCA) of biogas-fed solid oxide fuel cell (SOFC) plant. Energy 126:585–602

    Article  CAS  Google Scholar 

  • Roostaei J, Zhang Y (2017) Spatially explicit life cycle assessment: opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Res 24:395–402

    Article  Google Scholar 

  • Savage PE, Hestekin JA (2013) A perspective on algae, the environment, and energy. Environ Prog Sustain Energy 32:877–883

    Article  CAS  Google Scholar 

  • Soh L, Zimmerman J (2011) Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem 13:1422–1429

    Article  CAS  Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106:1704–1709

    Article  CAS  Google Scholar 

  • Tavakolli H, Azari A, Ashrafi K, Pour MS (2013) Cementitious properties of steelmaking slags. Tech J Eng Appl Sci TJEAS J 3:1071–1073

    Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  CAS  Google Scholar 

  • Ullah K, Ahmad M, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–423

    Article  CAS  Google Scholar 

  • Walsh MJ, van Doren LG, Shete N, Prakash A, Salim U (2018) Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions. Appl Energy 210:591–603

    Article  Google Scholar 

  • Wibul P, Malakul P, Pavasant P, Kangvansaichool K, Papong S (2012) Life cycle assessment of biodiesel production from microalgae in Thailand: energy efficiency and global warming impact reduction. Chem Eng Trans 29:1183–1188

    Google Scholar 

  • Winjobi O, Tavakoli H, Klemetsrud B, Handler R, Marker T, Roberts M, Shonnard D (2018) Carbon footprint analysis of gasoline and diesel from forest residues and algae using integrated hydropyrolysis and hydroconversion plus fischer-tropsch (IH2® plus cool GTL™). ACS Sustain Chem Eng 6:10766–10777

    Article  CAS  Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Biores Technol 102:159–165

    Article  CAS  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  CAS  Google Scholar 

  • Zhang W-N, Liu D-C (2005) A new process for preparation of soybean protein concentrate with hexane-aqueous ethanol mixed solvents. J AOAC Int 88:1217–1222

    CAS  Google Scholar 

Download references

Acknowledgements

This paper presents research results supported by a Graduate Faculty of Environment, University of Tehran Education Grant (No. 28784/G/14). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Graduate Faculty of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Noorpoor.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Editorial responsibility: Shahid Hussain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azari, A., Noorpoor, A.R. & Bozorg-Haddad, O. Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions. Int. J. Environ. Sci. Technol. 16, 6671–6684 (2019). https://doi.org/10.1007/s13762-018-2072-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2072-5

Keywords

Navigation