Skip to main content
Log in

Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

High level of particulate matter pollution in the urban areas of major cities is significantly affecting the human health due to its toxic chemical constituents. Re-suspension of road dust along with tyre and brake wear are the dominant sources of PM pollution in the urban area in both developed and developing countries. This paper mainly reviews the contribution of road dust in ambient PM level, factors affecting re-suspension of road dust and chemical reagents available for dust suppression. The emission of road dust re-suspension significantly varies based on amount of silt deposited on the road, type of road (paved and unpaved road, concrete material of the paved road), number and types of vehicles movement. The chemical reagent such as calcium magnesium acetate, magnesium chloride and calcium chloride are reported to significantly reduce the PM emissions from road dust in developed countries. Therefore, the efficacy of these chemicals in reducing the road dust from the urban road in developing countries needs to be evaluated along with the cost–benefit analysis and comparison with the conventional approach of dust control (road cleaning and washing). However, the associated factors in different countries may vary significantly as compared to Western countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Allaban M, Gillies JA, Gertler AW, Clayton R, Proffitt D (2003) Tailpipe, re-suspended road dust and brake-wear emission factors from on-road vehicles. Atmos Environ 37:5283–5293

    Article  CAS  Google Scholar 

  • AIRUSE (2016a) Air pollutant trends in Barcelona. AIRUSE LIFE 11 ENV/ES/584. http://airuse.eu/wp-content/uploads/2013/11/R02_AIRUSE-Air-pollutant-trends-in-Barcelona.pdf. Accessed 30 Sept 2017

  • AIRUSE (2016b) The efficacy of dust suppressants to control road dust re-suspension in Northern and Central Europe. Report 14, LIFE 11/ENV/ES/584

  • AIRUSE (2017) Methods used in Barcelona to evaluate the effectiveness of CMA and MgCl2 in reducing road dust emissions. Action B7, LIFE11 ENV/ES/584. http://airuse.eu/wp-content/uploads/2013/10/B7-1-ES_BCN-CMA-and-MgC12.pdf. Accessed 26 June 2017

  • Aldrin M, Haffa IH, Rosland P (2008) The effect of salting with magnesium chloride on the concentration of particulate matter in a road tunnel. Atmos Environ 42:1762–1776

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43:1650–1659

    Article  CAS  Google Scholar 

  • Amato F, Querol X, Johansson C, Nagl C, Alastuey A (2010) A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci Total Environ 408:3070–3084

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Moreno T, Furger M, Pey J, Alastuey A, Bukowiecki N, Prevot ASH, Baltensperger U, Querol X (2011) Sources and variability of inhalable road dust particles in three European cities. Atmos Environ 37:6777–6787

    Article  CAS  Google Scholar 

  • Amato F, Karanasiou A, Moreno T, Alastuey A, Orza JAG, Lumbreras J, Borge R, Boldo E, Linares C, Querol X (2012) Emission factors from road dust resuspension in a Mediterranean freeway. Atmos Environ 61:580–587

    Article  CAS  Google Scholar 

  • Amato F, Escrig A, Sanfelix V, Celades I, Reche C, Monfort E, Querol X (2016a) Effects of water and CMA in mitigating industrial road dust resuspension. Atmos Environ 131:334–340

    Article  CAS  Google Scholar 

  • Amato F, Zandveld P, Keuken M, Jonkers S, Querol X, Reche C, Denier HAC, Schaap M (2016b) Improving the modelling of road dust levels for Barcelona at urban scale and street level. Atmos Environ 125:231–242

    Article  CAS  Google Scholar 

  • Barrett B, Carslaw D, Fuller G, Green D, Tremper A (2012) Evaluation of the impact of dust suppressant application on ambient PM10 concentrations in London. Prepared for Transport for London under contract to URS Infrastructure & Environment Ltd., Kings College London

  • Berthelsen BO (2003) The use of magnesium chloride as dust reducer at E6 through Trondheim (in Norwegian). Report no. TM2003/2, Trondheim Municipality, Environment Division, Trondheim, Norway, ISBN: 82-7727-087-9

  • Bogacki M, Mazur M, Oleniacz R, Rzeszutek M, Szulecka A (2018) Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality. In: Proceedings of Xth scientific conference air protection in theory and practice. https://doi.org/10.1051/e3sconf/20182801003

  • Bukowiecki N, Lienemann P, Hill M, Furger M, Richard A, Amato F, Prevot ASH, Baltensperger U, Buchmann B, Gehrig R (2010) PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos Environ 44:2330–2340

    Article  CAS  Google Scholar 

  • Caouette L (2017) Application methods calcium chloride as a dust suppressant. Hopec Enterprises Ltd. https://www.nmto.ca/sites/default/files/application_of_calcium_chloride.pdf. Accessed 20 July 2017

  • Census of India (2011) Delhi population census data 2011. http://www.census2011.co.in/census/state/delhi.html. Accessed 24 June 2017

  • CPCB (2009) National ambient air quality standards. The Central Pollution Control Board, Ministry of Environment and Forest, Government of India, New Delhi. Notification number: S.O.3067 (E), p 4

  • CPCB (2010a) Air quality monitoring, emission inventory and source apportionment study for Indian cities. National Summary Report, p 290. http://www.moef.nic.in/downloads/public-information/Rpt-air-monitoring-17-01-2011.pdf. Accessed 11 Nov 2017

  • CPCB (2010b) Air quality monitoring, emission inventory and source apportionment study for Delhi, p 658. http://cpcb.nic.in/Delhi.pdf. Accessed 11 Nov 2017

  • Denby BR, Sundvor I, Johansson C, Pirjola L, Ketzel M, Norman M, Kupiainen K, Gutafsson M, Blomqvist G, Omstedt G (2013) A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: road dust loading and suspension modelling. Atmos Environ 77:283–300

    Article  CAS  Google Scholar 

  • Etyemezian V, Kuhns H, Chow J, Hendrickson K, McGrown M, Pitchford M (2003a) Vehicle-based road dust emission measurement—part III: effect of speed, traffic volume, location, and season on PM10 road dust emissions in the Treasure Valley, ID. Atmos Environ 3:4583–4593

    Article  CAS  Google Scholar 

  • Etyemezian V, Kuhns H, Gillies J, Green M, Pitchford M, Watson J (2003b) Vehicle-based road dust emission measurement—part I: methods and calibration. Atmos Environ 37:4559–4571

    Article  CAS  Google Scholar 

  • Gatosa J, Nyamadzawo G, Mtetwa T, Kanda A, Dudu VP (2015) Comparative road dust suppression capacity of molasses stillage and water on gravel road in Zimbabwe. Adv Res 3:198–208

    Article  Google Scholar 

  • Gertler A, Kuhns H, Abu-Allaban M, Damm C, Etyemezian V, Clayton R, Proffitt D (2006) A case study of the impact of winter road sand/salt and street sweeping on road dust re-entrainment. Atmos Environ 40:5976–5985

    Article  CAS  Google Scholar 

  • Gokhale S, Khare M (2007) A theoretical framework for the episodic-urban air quality management plan (e-UAQMP). Atmos Environ 41:7887–7894

    Article  CAS  Google Scholar 

  • Grigoratos T, Martini G (2015) Brake wear particle emissions: a review. Environ Sci Pollut Res 22:2491–2504

    Article  CAS  Google Scholar 

  • Gulia S, Goyal SK, Kumar R (2017) Analysis of air pollution episode and qualitative evaluation of proposed control measures in Delhi City. In: Proceeding of 2nd Indian international conference on air quality management (IICAQM-2017) New Delhi, 1–2nd June, pp 1–9

  • Gummeneni S, Yusup YP, Chavali M, Samadi SZ (2011) Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos Res 101:752–764

    Article  CAS  Google Scholar 

  • Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazard Mater 142:279–287

    Article  CAS  Google Scholar 

  • Gupta I, Salunkhe A, Kumar R (2012) Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India. Sci World J. https://doi.org/10.1100/2012/585791

    Article  Google Scholar 

  • Gustafsson M, Blomqvist G, Jonsson P, Ferm M (2010) Effects of dust binding of paved roads, VTI rapport 666. VTI, Linköping

    Google Scholar 

  • Han S, Jung YW (2012) A study of the characteristic of silt loading on the paved roads in the Seoul metropolitan area using a mobile monitoring system. J Air Waste Manag Assoc 62:846–862

    Article  Google Scholar 

  • Heal MR, Kumar P, Harrison RM (2012) Particles air quality policy and health. Chem Soc Rev 41:6606–6630

    Article  CAS  Google Scholar 

  • HEI (2017) State of global air 2017. Special Report Health Effects Institute, Boston, p 2017

    Google Scholar 

  • Ho KF, Lee SC, Chow JC, Watson JG (2003) Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos Environ 37(8):1023–1032

    Article  CAS  Google Scholar 

  • Hussein T, Johannson C, Karlsson H, Hansson HC (2008) Factors affecting non-tailpipe aerosol particle emissions from paved roads: on-road measurements in Stockholm, Sweden. Atmos Environ 42:688–702

    Article  CAS  Google Scholar 

  • IMD (2017) Frequently asked question, season classification of India. http://imd.gov.in/section/nhac/wxfaq.pdf. Accessed Sept 2017

  • Jia HL, Peng L, Mu L (2011) The chemical composition and sources of PM10 in urban road dust. Appl Mech Mater 71–78:2749–2752

    Article  CAS  Google Scholar 

  • Karanasiou A, Moreno T, Amato F, Lumbreras J, Narros A, Borge R, Tobias A, Boldo E, Linares C, Pey J, Reche G, Alastuey A, Querol X (2011) Road dust contribution to PM levels—evaluation of the effectiveness of street washing activities by means of positive matrix factorization. Atmos Environ 45:2193–2201

    Article  CAS  Google Scholar 

  • Karanasiou A, Amato F, Moreno T, Lumbreras J, Borge F, Linares C, Boldo E, Alastuey A, Querol X (2014) Road dust emission sources and assessment of street washing effect. Aerosol Air Qual Res 14:734–743

    Article  CAS  Google Scholar 

  • Kauhaniemi M, Stojiljkovic A, Pirjola L, Karppinen A, Harkonen J, Kupiainen K, Kangas L, Aarnio MA, Omstedt G, Denby BR, Kukkone J (2014) Comparison of the predictions of two road dust emission models with the measurements of a mobile van. Atmos Chem Phys 14:9155–9169

    Article  CAS  Google Scholar 

  • Keuken M, van der Gon HD, van der Valk K (2010) Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Sci Total Environ 408(20):4591–4599

    Article  CAS  Google Scholar 

  • Kuhns H, Etyemezian V, Green M, Hendrickson K, Gown M, Barton K, Pitchford M (2003) Vehicle-based road dust emission measurement—part II: effect of precipitation, wintertime road sanding and street sweepers on inferred PM10 emission potentials from paved and unpaved roads. Atmos Environ 37:4573–4582

    Article  CAS  Google Scholar 

  • Kupiainen K (2007) Road dust from pavement wear and traction sanding. Monographs of the Boreal Environment Research. https://helda.helsinki.fi/bitstream/handle/10138/21928/roaddust.pdf?sequence=1

  • Kupiainen KJ, Pirjola L (2011) Vehicle non-exhaust emissions from the tyre-road interface- effect of stud properties, traction sanding and resuspension. Atmos Environ 45:4141–4146

    Article  CAS  Google Scholar 

  • Kupiainen K, Pirjola L, Ritola R, Väkevä O, Viinanen J, Stojiljkovic A, Malinen A (2011) Street dust emissions in Finnish cities—summary of results 2006–2010. City of Helsinki, Environment Centre, Publication 5/2011, Helsinki

  • Lampinen A (1993) Rutting of pavements caused by studded tyres. Ph.D. thesis, Technical Centre of Finland, Espoo, Finland

  • Marrapu P, Cheng Y, Beig G, Sahu S, Srinivas R, Carmichael GR (2014) Air quality in Delhi during the commonwealth games. Atmos Chem Phys 14(19):10619–10630

    Article  CAS  Google Scholar 

  • McCrae I (2009) International review of the air quality innovation programme (IPL). Scientific Board Review, report number IPL-8. http://www.rijkswaterstaat.nl/images/Eindrapport%20Scientific%20Board_tcm174282754.pdf. Accessed 11 Oct 2017

  • Nagpure AS, Gurjar BR, Kumar V, Kumar P (2016) Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos Environ 127:118–124

    Article  CAS  Google Scholar 

  • Nicholsan KW, Branson JR, Giess P, Cannell RJ (1989) The effect of vehicle activity on particle resuspension. J Aerosol Sci 20:1425–1428

    Article  Google Scholar 

  • Nicholson KW (1988) A review of particle resuspension. Atmos Environ 22(12):2639–2651

    Article  CAS  Google Scholar 

  • Norman M, Johansson C (2006) Studies of some measures to reduce road dust emissions from paved roads in Scandinavia. Atmos Environ 40:615406164

    Google Scholar 

  • Norman M, Sundvor I, Denby BR, Johannson C, Gutasson M, Blomqvist G, Janhall S (2016) Modelling road dust abatement measures using NORTRIP model: vehicle speed and studded tyre reduction. Atmos Environ 134:96–108

    Article  CAS  Google Scholar 

  • OCE (2017) Calcium chloride in dust control applications, still the most effective dust control agent. http://www.daleedustcontrol.com/downloads/Calcium%20Chloride%20for%20Dust%20Control%20Applications.pdf. Accessed 20 July 2017

  • Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison RM (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi India and inference of sources. Atmos Environ 109:178–189

    Article  CAS  Google Scholar 

  • Pipalatkar P, Khaparde VV, Gajghate DG, Bawase MS (2014) Source apportionment of PM2.5 using a CMB model for a centrally located Indian City. Aerosol Air Qual Res 14:1089–1099

    Article  CAS  Google Scholar 

  • Pirjola L, Kupiainen KJ, Perhoniemi P, Tervahattu H, Vesala H (2010) Non-exhaust emission measurement system of the mobile laboratory SNIFFER. Atmos Environ 43:4703–4713

    Article  CAS  Google Scholar 

  • Pirjola L, Johansson C, Kupiainen K, Stojiljkovic A, Karlsson H, Hussein T (2012) Road dust emissions from paved roads measured using different mobile systems. J Air Waste Manag Assoc 60:1422–1433

    Article  CAS  Google Scholar 

  • Plessis J, Rensburg L, Rensburg LP (2016) Effectiveness of applying dust suppression palliatives. J Mine Vent Soc S Afr 69:15–19

    Google Scholar 

  • Sahu SK, Beig G, Parkhi NS (2011) Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during commonwealth games 2010. Atmos Environ 45:6180–6190

    Article  CAS  Google Scholar 

  • Sanders TG, Addo JQ, Ariniello A, Heiden WF (1997) Relative effectiveness of road dust suppressants. J Transp Eng 123:393–397

    Article  Google Scholar 

  • Sharma M, Dikshi O (2016) Comprehensive study on air pollution and green house gases (GHGs) in Delhi. Final report, IIT Kanpur, p 334. http://delhi.gov.in/DoIT/Environment/PDFs/Final_Report.pdf. Accessed 5 Dec 2016

  • Sharma AP, Kim KH, Ahn JW, Shon ZH, Sohn JR, Lee JH, Brown RJ (2014) Ambient particulate matter (PM10) concentrations in major urban areas of Korea during 1996–2010. Atmos Pollut Res 5(1):161–169

    Article  CAS  Google Scholar 

  • Turoczi BJ, Hoffer A, Kosa IN, Glencser A (2013) Sampling and characterization of re-suspended and respirable road dust. J Aerosol Sci 65:69–76

    Article  CAS  Google Scholar 

  • USEPA (2011) Compilation of air pollutant emission factors: miscellaneous sources—paved roads final section, 5th edn. US Environment Protection Agency AP 42

  • Vega E, Mugica V, Reyes E, Sanchez G, Chow JC, Watson JG (2001) Chemical composition of fugitive dust emitters in Mexico City. Atmos Environ 35(23):4033–4039

    Article  CAS  Google Scholar 

  • Wargo J, Wargo L, Alderman N (2006) The harmful effects of vehicle exhaust a case for policy change. Environment & Human Health Inc, North Haven

    Google Scholar 

  • Zubeck H, Harvey S, Larson E, Aleshire L (2005) Studded tires—time to reconsider bans? In: E-Proceedings of 4th Asia Pacific conference on transportation and environment, Xi’an, China, 8.11.2005–10.11.2005

Download references

Acknowledgments

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gulia.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulia, S., Goyal, P., Goyal, S.K. et al. Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review. Int. J. Environ. Sci. Technol. 16, 1717–1728 (2019). https://doi.org/10.1007/s13762-018-2001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2001-7

Keywords

Navigation