Skip to main content
Log in

Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Unscientific dumping of shellfishery waste is a major environmental concern worldwide and a serious threat to the coastal area. The shell wastes constitute of many commercially valuable products, such as, chitin, calcium carbonate, proteins, and carotenoids. Processing of shell wastes is a source of wealth. Chitin is one of the constituents of the shell wastes and also the most abundant biopolymer next to the cellulose. Calcium carbonate and proteins are the other valuable constituents of the shell wastes and can serve as a better animal feed supplement. Extraction of chitin and other valuable products from a complex mixture is cumbersome and requires consecutive pretreatment processes. Both chemical and fermentation routes of pretreatment strategies have been adopted to extract the chitin from the shell wastes, which are critically reviewed with their merits and demerits. The application of process intensification techniques, such as ultrasonication and microwave radiation, is also emphasized along with the recent advancement in the field of pretreatment processes. Pleiotropic industrial applications of chitin and its analogues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from (Devi and Dhamodharan 2018). Copyright@American Chemical Society

Fig. 3
Fig. 4

Reprinted with permission from Wang et al. (2018). Copyright@American Chemical Society

Fig. 5

Reprinted with permission from Wang et al. (2018). Copyright@American Chemical Society

Fig. 6

Reprinted with permission from Sathiyabama and Manikandan (2018). Copyright@American Chemical Society

Fig. 7

Reprinted with permission from Sharma and Singh (2017). Copyright@American Chemical Society

Fig. 8

Reprinted with permission from—Nascimento et al. (2014). Copyright@American Chemical Society

Similar content being viewed by others

References

  • Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    Article  CAS  Google Scholar 

  • Adnadjevic B, Jovanovic J (2011) The effects of microwave heating on the isothermal kinetics of chemicals reactions and physicochemical processes. In: Advances in induction and microwave heating of mineral and organic materials. InTech

  • Ahn CW, Nam HS, Lee HJ, Shin YC (1994) Decolorization of shrimp chitin using sodium hypochlorite. Korean J Food Sci Technol 26:787–790

    Google Scholar 

  • Alves HJ et al (2017) Effect of shrimp shells milling on the molar mass of chitosan. Polímeros 27:41–47

    Article  Google Scholar 

  • Aranaz I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  • Arbia W, Adour L, Amrane A, Lounici H (2013a) Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology. Food Hydrocolloids 31:392–403

    Article  CAS  Google Scholar 

  • Arbia W, Arbia L, Adour L, Amrane A (2013b) Chitin extraction from crustacean shells using biological methods–a review. Food Technol Biotechnol 51:12–25

    Google Scholar 

  • Arvanitoyannis I (2008) The use of chitin and chitosan for food packaging applications. Environmentally compatible food packaging, vol 137

  • Aye KN, Stevens WF (2004) Improved chitin production by pretreatment of shrimp shells. J Chem Technol Biotechnol 79:421–425

    Article  CAS  Google Scholar 

  • Aytekin O, Elibol M (2010) Cocultivation of Lactococcus lactis and Teredinobacter turnirae for biological chitin extraction from prawn waste. Bioprocess Biosyst Eng 33:393–399

    Article  CAS  Google Scholar 

  • Badawy ME, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29

    Article  CAS  Google Scholar 

  • Bansal V, Sharma PK, Sharma N, Pal OP, Malviya R (2011) Applications of chitosan and chitosan derivatives in drug delivery. Adv Biol Res 5:28–37

    CAS  Google Scholar 

  • Barikani M, Oliaei E, Seddiqi H, Honarkar H (2014) Preparation and application of chitin and its derivatives: a review. Iran Polym J 23:307–326

    Article  CAS  Google Scholar 

  • Binod P, Pusztahelyi T, Nagy V, Sandhya C, Szakács G, Pócsi I, Pandey A (2005) Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzyme Microb Technol 36:880–887

    Article  CAS  Google Scholar 

  • Bourbon AI, Pinheiro AC, Cerqueira MA, Rocha CM, Avides MC, Quintas MA, Vicente AA (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106:111–118

    Article  CAS  Google Scholar 

  • Bustos RO, Healy MG Microbial deproteinisation of waste prawn shell. In: Anon (ed) Proceedings of the 2nd international symposium on environmental biotechnology, 1994. Institution of Chemical Engineers Symposium Series. Publ by Inst of Chemical Engineers, Rugby, United Kingdom, pp 13–15

  • Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41:1135–1153

    Article  CAS  Google Scholar 

  • Chen J, Wang Q, Hua Z, Du G (2007) Research and application of biotechnology in textile industries in China. Enzyme Microb Technol 40:1651–1655

    Article  CAS  Google Scholar 

  • Choi C-R et al (2012) Chitooligosaccharides decreases plasma lipid levels in healthy men. Int J Food Sci Nutr 63:103–106

    Article  CAS  Google Scholar 

  • Coral G, Huberman A, de la Lanza G, Monroy-Ruiz J (1998) Muscle pigmentation of rainbow trout (Oncorhynchus mykiss) fed on oil-extracted pigment from langostilla (Pleuroncodes planipes) compared with two commercial sources of astaxanthin. J Aquat Food Prod Technol 7:31–45

    Article  CAS  Google Scholar 

  • Correia R, Magalhaes M, Marques P, Senos A (1996) Wet synthesis and characterization of modified hydroxyapatite powders. J Mater Sci Mater Med 7:501–505

    Article  CAS  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  • Devi R, Dhamodharan R (2018) Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. Acs Sustain Chem Eng 6:846–853. https://doi.org/10.1021/acssuschemeng.7b03195

    Article  CAS  Google Scholar 

  • Díaz-Rojas EI, Argüelles-Monal WM, Higuera-Ciapara I, Hernández J, Lizardi-Mendoza J, Goycoolea FM (2006) Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol Biosci 6:340–347

    Article  CAS  Google Scholar 

  • Du J, Tan E, Kim HJ, Zhang A, Bhattacharya R, Yarema KJ (2014) Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr Polym 99:483–490

    Article  CAS  Google Scholar 

  • Dutta PK, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  • Dutta J, Tripathi S, Dutta P (2012) Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Revista de Agaroquimica y Tecnologia de Alimentos 18:3–34

    CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  CAS  Google Scholar 

  • El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A (2016) Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ Prot 104:395–405

    Article  CAS  Google Scholar 

  • FAO (2017) Increased production of farmed shrimp leads to improved international trade. GLOBEFISH—analysis and information on world fish trade http://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/989543/. Accessed 10 July 2017

  • Fernandes JC et al (2012) Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model. Mar Drugs 10:2661–2675

    Article  CAS  Google Scholar 

  • Finkelstein A, Wohlt J, Emanuele S, Tweed S (1993) Composition and nutritive value of ground sea clam shells as calcium supplements for lactating holstein cows1. J Dairy Sci 76:582–589

    Article  Google Scholar 

  • Flores-Albino B, Arias L, Gómez J, Castillo A, Gimeno M, Shirai K (2012) Chitin and L (+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioprocess Biosyst Eng 35:1193–1200

    Article  CAS  Google Scholar 

  • Foster A, Webber J (1961) Chitin. Advances in carbohydrate chemistry 15:371–393

    CAS  Google Scholar 

  • Frydenberg RP, Hammershøj M, Andersen U, Wiking L (2013) Ultrasonication affects crystallization mechanisms and kinetics of anhydrous milk fat. Cryst Growth Des 13:5375–5382

    Article  CAS  Google Scholar 

  • Fu Y, Xiao C (2017) A facile physical approach to make chitosan soluble in acid-free water. Int J Biol Macromol 103:575–580

    Article  CAS  Google Scholar 

  • Funahashi R, Ono Y, Qi Z-D, Saito T, Isogai A (2017) Molar masses and molar mass distributions of chitin and acid-hydrolyzed chitin. Biomacromolecules 18:4357–4363

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72

    Article  CAS  Google Scholar 

  • Gautier S, Xhauflaire-Uhoda E, Gonry P, Piérard G (2008) Chitin–glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci 30:459–469

    Article  CAS  Google Scholar 

  • Gerry R (1980) Ground dried whole mussels as a calcium supplement for chicken rations. Poult Sci 59:2365–2368

    Article  Google Scholar 

  • Ghorbel-Bellaaj O, Jellouli K, Younes I, Manni L, Salem MO, Nasri M (2011) A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164:410–425

    Article  CAS  Google Scholar 

  • Ghorbel-Bellaaj O, Younes I, Maâlej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51:1196–1201

    Article  CAS  Google Scholar 

  • Ghorbel-Bellaaj O, Hajji S, Younes I, Chaabouni M, Nasri M, Jellouli K (2013) Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int J Biol Macromol 61:243–250

    Article  CAS  Google Scholar 

  • Gortari MC, Hours RA (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol 16:1–14

    Google Scholar 

  • Guinotte F, Nys Y, De Monredon F (1991) The effects of particle size and origin of calcium carbonate on performance and ossification characteristics in broiler chicks. Poult Sci 70:1908–1920

    Article  CAS  Google Scholar 

  • Gupta D (2007) Antimicrobial treatments for textiles. Indian J Fibre Text Res 32:254–263

    CAS  Google Scholar 

  • Haddar A, Hmidet N, Ghorbel-Bellaaj O, Fakhfakh-Zouari N, Sellami-Kamoun A, Nasri M (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16:669

    Article  CAS  Google Scholar 

  • Hajji S, Ghorbel-Bellaaj O, Younes I, Jellouli K, Nasri M (2015) Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. Int J Biol Macromol 79:167–173

    Article  CAS  Google Scholar 

  • Han F-S, Yang S-J, Lin M-B, Chen Y-Q, Yang P, Xu J-M (2016) Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World J Gastroenterol 22:5193

    Article  CAS  Google Scholar 

  • Harkin C, Brück W, Lynch C (2015) Isolation & identification of bacteria for the treatment of brown crab (Cancer pagurus) waste to produce chitinous material. J Appl Microbiol 118:954–965

    Article  CAS  Google Scholar 

  • Heu M-S, Kim J-S, Shahidi F (2003) Components and nutritional quality of shrimp processing by-products. Food Chem 82:235–242

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  Google Scholar 

  • Horst MN, Walker AN, Klar E (1993) The pathway of crustacean chitin synthesis. The crustacean integument morphology and biochemistry, pp 113–149

  • Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RCF, Bekhit AE-DA (2016) Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol 46:1047–1116

    Article  CAS  Google Scholar 

  • Huang R, Mendis E, Rajapakse N, Kim S-K (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–2408

    Article  CAS  Google Scholar 

  • Ingeç T, Tekin T (2004) Effect of ultrasound on the production reaction kinetics of sodium thiosulfate. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 27:150–153

    Google Scholar 

  • Ivancic A, Macaev F, Aksakal F, Boldescu V, Pogrebnoi S, Duca G (2016) Preparation of alginate–chitosan–cyclodextrin micro-and nanoparticles loaded with anti-tuberculosis compounds. Beilstein J Nanotechnol 7:1208

    Article  CAS  Google Scholar 

  • Jeong HW et al (2012) Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS ONE 7:e40073

    Article  CAS  Google Scholar 

  • Jianglian D, Shaoying Z (2013) Application of chitosan based coating in fruit and vegetable preservation: a review. J Food Process Technol 4:1–4

    Article  Google Scholar 

  • Ju C, Yue W, Yang Z, Zhang Q, Yang X, Liu Z, Zhang F (2010) Antidiabetic effect and mechanism of chitooligosaccharides. Biol Pharm Bull 33:1511–1516

    Article  CAS  Google Scholar 

  • Jung W, Kuk J, Kim K, Park R (2005) Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol 67:851–854

    Article  CAS  Google Scholar 

  • Kafetzopoulos D, Martinou A, Bouriotis V (1993) Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci 90:2564–2568

    Article  CAS  Google Scholar 

  • Kamjumphol W, Chareonsudjai P, Chareonsudjai S (2018) Antibacterial activity of chitosan against Burkholderia pseudomallei. MicrobiologyOpen 7:1–8

    Article  CAS  Google Scholar 

  • Kang N-H et al (2012) Modulation of lipid metabolism by mixtures of protamine and chitooligosaccharide through pancreatic lipase inhibitory activity in a rat model. Lab Animal Res 28:31–38

    Article  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B, Bhanu AN (2014) A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res 1:1–8

    Google Scholar 

  • Kaya M, Baran T, Karaarslan M (2015) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29:1477–1480

    Article  CAS  Google Scholar 

  • Khanafari A, Marandi R, Sanatei S (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. J Environ Health Sci Eng 5:1–24

    Google Scholar 

  • Khorrami M, Najafpour G, Younesi H, Amini G (2011) Growth kinetics and demineralization of shrimp shell using Lactobacillus plantarum PTCC 1058 on various carbon sources. Iran J Energy Environ 2:320–325

    Google Scholar 

  • Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8:1988–2012

    Article  CAS  Google Scholar 

  • Kim E-K et al (2012) Chitooligosaccharides induce apoptosis in human myeloid leukemia HL-60 cells. Bioorg Med Chem Lett 22:6136–6138

    Article  CAS  Google Scholar 

  • Kjartansson GT, Zivanovic S, Kristbergsson K, Weiss J (2006a) Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). J Agric Food Chem 54:5894–5902

    Article  CAS  Google Scholar 

  • Kjartansson GT, Zivanovic S, Kristbergsson K, Weiss J (2006b) Sonication-assisted extraction of chitin from shells of fresh water prawns (Macrobrachium rosenbergii). J Agric Food Chem 54:3317–3323

    Article  CAS  Google Scholar 

  • Kumar RS (2016) Textiles for industrial applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Leal ALG, de Castro PF, de Lima JPV, de Souza Correia E, de Souza Bezerra R (2010) Use of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus L.) feeds. Aquacult Int 18:635–646

    Article  Google Scholar 

  • Lee M, Nah J-W, Kwon Y, Koh JJ, Ko KS, Kim SW (2001) Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm Res 18:427–431

    Article  CAS  Google Scholar 

  • Liu M et al (2016) Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Controll Release 222:67–77

    Article  CAS  Google Scholar 

  • Lopata AL, Kleine-Tebbe J, Kamath SD (2017) Allergens and molecular diagnostics of shellfish allergy. In: Molecular allergy diagnostics. Springer, pp 399–414

  • Luo Z, Dong X, Ke Q, Duan Q, Shen L (2014) Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer. Oncol Lett 8:361–366

    Article  CAS  Google Scholar 

  • Mahdavi B, Rahimi A (2013) Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian J BioSci 7:69–76

    Article  CAS  Google Scholar 

  • Mahmoud N, Ghaly A (2015) Effect of particle size on the kinetic parameters of the deproteinization process of galactose supplemented shrimp shells by Aspergillus niger. J Adv Biotechnol Bioeng 3:14–31

    Article  CAS  Google Scholar 

  • Mahmoud NS, Ghaly A unconventional demineralization of crustacean waste for the production of chitin. In: 2006 ASAE annual meeting, 2006. American Society of Agricultural and Biological Engineers, p 1

  • Mao X, Guo N, Sun J, Xue C (2017) Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J Clean Prod 143:814–823

    Article  CAS  Google Scholar 

  • Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–701

    Article  CAS  Google Scholar 

  • Mezzomo N, Ferreira SRS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem 2016:1–16

    Article  CAS  Google Scholar 

  • Mizani M, Aminlari M, Khodabandeh M (2005) An effective method for producing a nutritive protein extract powder from shrimp-head waste. Food Sci Technol Int 11:49–54

    Article  CAS  Google Scholar 

  • Moattari M, Moattari F, Kaka G, Kouchesfehani HM, Sadraie HMN (2018) Application of chitosan in textiles. Ann Mater Sci Eng 3:1032

    Google Scholar 

  • Morganti P (2009) Chitin-nanofibrils in skin treatment. J Appl Cosmetol 27:251–270

    Google Scholar 

  • Morganti P, Fabrizi G, Palombo P, Palombo M, Ruocco E, Cardillo A, Morganti G (2008) Chitin-nanofibrils: a new active cosmetic carrier. J Appl Cosmetol 26:113–128

    CAS  Google Scholar 

  • Morganti P, Morganti G, Morganti A (2011) Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society. Nanotechnol Sci Appl 4:123

    Article  CAS  Google Scholar 

  • Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33

    Article  CAS  Google Scholar 

  • Muir FV, Harris PC, Gerry RW (1976) The comparative value of five calcium sources for laying hens. Poult Sci 55(3):1046–1051

    Article  CAS  Google Scholar 

  • Muzzarelli R, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. In: Polysaccharides I. Springer, pp 151–209

  • Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM (2014) Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model. Mol Pharm 11:3515–3527

    Article  CAS  Google Scholar 

  • Neves AC, Zanette C, Grade ST, Schaffer JV, Alves HJ, Arantes MK (2017) Optimization of lactic fermentation for extraction of chitin from freshwater shrimp waste. Acta Scientiarum Technol 39:125–133

    Article  Google Scholar 

  • Ngo D-N, Lee S-H, Kim M-M, Kim S-K (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1:188–198

    Article  CAS  Google Scholar 

  • Nisha S, Seenivasan A, Vasanth D Chitin and its derivatives: structure, production, and their applications. In: International conference on signal processing, communication, power and embedded system (SCOPES), Paralakhemundi, Odisha, India, 2016. vol 3. IEEE, pp 127–130

  • No HK, Hur EY (1998) Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J Agric Food Chem 46:3844–3846

    Article  CAS  Google Scholar 

  • Oh K-T, Kim Y-J, Jung W-J, Park R-D (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074

    Article  CAS  Google Scholar 

  • Oh K-T, Kim Y-J, Van Nguyen N, Jung W-J, Park R-D (2008) Effect of crab shell size on bio-demineralization with lactic acid-producing bacterium, Lactobacillus paracasei subsp. tolerans KCTC-3074. Biotechnol Bioprocess Eng 13:566–570

    Article  CAS  Google Scholar 

  • Oso A, Idowu A, Niameh O (2011) Growth response, nutrient and mineral retention, bone mineralisation and walking ability of broiler chickens fed with dietary inclusion of various unconventional mineral sources. J Animal Physiol Animal Nutr 95:461–467

    Article  CAS  Google Scholar 

  • Pachapur VL, Guemiza K, Rouissi T, Sarma SJ, Brar SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91:2331–2339

    Article  CAS  Google Scholar 

  • Pacheco N, Garnica-Gonzalez M, Gimeno M, Bárzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromol 12:3285–3290

    Article  CAS  Google Scholar 

  • Paul T et al (2015) Production of chitin and bioactive materials from Black tiger shrimp (Penaeus monodon) shell waste by the treatment of bacterial protease cocktail 3. Biotech 5:483–493

    Google Scholar 

  • Peniston QP, Johnson EL (1978) Process for demineralization of crustacea shells. United State Patent

  • Percot A, Viton C, Domard A (2003) Characterization of shrimp shell deproteinization. Biomacromol 4:1380–1385

    Article  CAS  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    Article  CAS  Google Scholar 

  • Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  • Ploydee E, Chaiyanan S (2014) Production of high viscosity chitosan from biologically purified chitin isolated by microbial fermentation and deproteinization. Int J Polym Sci 2014:1–8

    Article  CAS  Google Scholar 

  • Prameela K, Mohan CM, Smitha P, Hemalatha K (2010) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int J Appl Sci Biol Chem Technol 1:903–910

    Google Scholar 

  • Prashanth KH, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  • Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63:367–374

    Article  CAS  Google Scholar 

  • Quan H, Zhu F, Han X, Xu Z, Zhao Y, Miao Z (2009) Mechanism of anti-angiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity. Med Hypotheses 73:205–206

    Article  CAS  Google Scholar 

  • Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B 139:52–61

    Article  CAS  Google Scholar 

  • Ramírez M, Rodríguez AT, Alfonso L, Peniche C (2010) Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnol Apl 27:270–276

    Google Scholar 

  • Rao M, Munoz J, Stevens W (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54:808–813

    Article  CAS  Google Scholar 

  • Rawway M, Beltagy EA, Abdul-Raouf UM, Elshenawy MA, Kelany MS (2018) Optimization of process parameters for chitinase production by a marine Aspergillus flavus MK20

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Sabu T, Visakh P, Mathew A (2013) Advances in natural polymers: composites and nanocomposites, vol 18. Advanced Structured Materials. Springer, Berlin

    Google Scholar 

  • Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules 18:3846–3868

    Article  CAS  Google Scholar 

  • Sahu BB, Sahu U, Nagesh Kumar Barik AA, Paikaray A, Mohapatra S, Sahu JK (2017) Bio-refinery products from shell fish processing waste: application of Chitin, Chitosan, Chitooligo saccharides and derivatives in organic agriculture. Int J Fish Aquat Res 2:27–31

    Google Scholar 

  • Salah R et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    Article  CAS  Google Scholar 

  • Santo Pereira AE, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF (2017) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B 150:141–152

    Article  CAS  Google Scholar 

  • Santos-Moriano P et al (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransform 36:57–67

    Article  CAS  Google Scholar 

  • Sathiyabama M, Manikandan A (2018) Application of copper–chitosan nanoparticles stimulate growth and induce resistance in Finger Millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66:1784–1790

    Article  CAS  Google Scholar 

  • Sawai J, Shiga H (2006) Kinetic analysis of the antifungal activity of heated scallop-shell powder against Trichophyton and its possible application to the treatment of dermatophytosis. Biocontrol Sci 11:125–128

    Article  CAS  Google Scholar 

  • Sawai J, Satoh M, Horikawa M, Shiga H, Kojima H (2001a) Heated scallop-shell powder slurry treatment of shredded cabbage. J Food Prot 64:1579–1583

    Article  CAS  Google Scholar 

  • Sawai J, Shiga H, Kojima H (2001b) Kinetic analysis of the bactericidal action of heated scallop-shell powder. Int J Food Microbiol 71:211–218

    Article  CAS  Google Scholar 

  • Sedaghat F, Yousefzadi M, Toiserkani H, Najafipour S (2016) Chitin from Penaeus merguiensis via microbial fermentation processing and antioxidant activity. Int J Biol Macromol 82:279–283

    Article  CAS  Google Scholar 

  • Sethulekshmi C (2014) Chitin and its benefits. Int J Adv Res Biol Sci 1:171–175

    Google Scholar 

  • Shahidi F (1994) Seafood processing by-products. In: Seafoods: chemistry, processing technology and quality. Springer, pp 320–334

  • Shahidi F, Botta JR (2012) Seafoods: chemistry, processing technology and quality. Springer, Berlin

    Google Scholar 

  • Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532

    Article  CAS  Google Scholar 

  • Sharma D, Singh J (2017) Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjug Chem 28:2772–2783

    Article  CAS  Google Scholar 

  • Sinha S, Chand S, Tripathi P (2014) Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. Appl Biochem Microbiol 50:125

    Article  CAS  Google Scholar 

  • Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342:2423–2429

    Article  CAS  Google Scholar 

  • Stoykov YM, Pavlov AI, Krastanov AI (2015) Chitinase biotechnology: production, purification, and application. Eng Life Sci 15:30–38

    Article  CAS  Google Scholar 

  • Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479

    Article  CAS  Google Scholar 

  • Tanha N, Karimzadeh K, Zahmatkesh A (2017) A study on the antimicrobial activities of chitin and chitosan extracted from freshwater prawn shells (Macrobrachium nipponense). Int J Health Stud 3:16–19

    Google Scholar 

  • Varshosaz J, Hassanzadeh F, Aliabadi HS, Khoraskani FR, Mirian M, Behdadfar B (2016) Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int J Biol Macromol 93:1192–1205

    Article  CAS  Google Scholar 

  • Vo T-S, Kim S-K (2010) Potential anti-HIV agents from marine resources: an overview. Mar Drugs 8:2871–2892

    Article  CAS  Google Scholar 

  • Wahyuntari B, Setyahadi S (2011) Process design of microbiological chitin extraction. Microbiol Indones 5:7

    Article  Google Scholar 

  • Wang S-L, Chio S-H (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microb Technol 22:629–633

    Article  CAS  Google Scholar 

  • Wang J, Jiang M, Xin Y, Geng N, Li X, Xuan S (2016) Effect of chitooligosaccharide on hepatic triglyceride metabolism and related mechanisms. Chin J Hepatol 24:220–224

    CAS  Google Scholar 

  • Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413

    Article  CAS  Google Scholar 

  • Watanabe T, Fujimoto R, Sawai J, Kikuchi M, Yahata S, Satoh S (2014) Antibacterial characteristics of heated scallop-shell nano-particles. Biocontrol Sci 19:93–97

    Article  Google Scholar 

  • Wild LG, Lehrer SB (2005) Fish and shellfish allergy. Current allergy and asthma reports 5:74–79

    Article  CAS  Google Scholar 

  • Wooten J, Singer NS (2003) Method of extracting chitin from the shells of exoskeletal animals. Google Patents

  • Wysokowski M, Petrenko I, Stelling AL, Stawski D, Jesionowski T, Ehrlich H (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Article  CAS  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25:170–179

    Article  CAS  Google Scholar 

  • Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158

    Article  CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Article  CAS  Google Scholar 

  • Younes I, Ghorbel-Bellaaj O, Nasri R, Chaabouni M, Rinaudo M, Nasri M (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47:2032–2039

    Article  CAS  Google Scholar 

  • Younes I, Hajji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  CAS  Google Scholar 

  • Zeng D, Mei X, Wu J (2010) Effects of an environmentally friendly seed coating agent on combating head smut of corn caused by Sphacelotheca reiliana and corn growth. J Agric Biotechnol Sustain Dev 2:108–112

    Google Scholar 

  • Zeng D, Luo X, Tu R (2012) Application of bioactive coatings based on chitosan for soybean seed protection. Int J Carbohydr Chem 2012:1–5. https://doi.org/10.1155/2012/104565

    Article  CAS  Google Scholar 

  • Zhang H, Jin Y, Deng Y, Wang D, Zhao Y (2012) Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr Res 362:13–20

    Article  CAS  Google Scholar 

  • Zhang J, Xl D, Jiang Z-F (2013) Research progress in functions of bioactive chitooligosaccharides in prevention and treatment of Alzheimer’s disease. Food Sci 11:066

    Google Scholar 

  • Zhang H, Yang S, Fang J, Deng Y, Wang D, Zhao Y (2014) Optimization of the fermentation conditions of Rhizopus japonicus M193 for the production of chitin deacetylase and chitosan. Carbohydr Polym 101:57–67

    Article  CAS  Google Scholar 

  • Zhao Y, Park R-D, Muzzarelli RA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46

    Article  CAS  Google Scholar 

  • Zhao L et al (2012) Effect of chitooligosaccharides schiff base on chlorophyll content in tobacco leaves infected by TMV. Acta Agric Jiangxi 24:113–116

    CAS  Google Scholar 

  • Ziegler RG (1991) Vegetables, fruits, and carotenoids and the risk of cancer. Am J Clin Nutr 53:251S–259S

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nisha Suryawanshi thanks CSIR, New Delhi, for funding the fellowship for her Ph.D. Programme. We also thank National Institute of Technology for funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ayothiraman.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryawanshi, N., Jujjavarapu, S.E. & Ayothiraman, S. Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. Int. J. Environ. Sci. Technol. 16, 3877–3898 (2019). https://doi.org/10.1007/s13762-018-02204-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-02204-3

Keywords

Navigation