Skip to main content
Log in

Bioremoval of cadmium using a dual-chambered fluidized bed bioreactor: a biofilm-based approach

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Cadmium is one of the toxic heavy metals which tend to accumulate in the biome posing threat to the living system. The present study investigated the cadmium removal efficiency by effective cadmium-resistant isolate in a novel dual-chambered horizontal continuous-flow bioreactor. Cadmium-resistant bacterial isolates were obtained from sewage effluent samples and were tested for their maximum tolerable concentration. The isolate VITKKAJ1 was found to be highly resistant to cadmium and exhibited high degree of biofilm formation. The capability of VITKKAJ1 in producing short-chain quorum-sensing molecules (acyl-homoserine lactone) was significantly correlated with the increased production of exopolysaccharides. Substrates such as gravels and alginate beads were packed in the perforated compartments of the bioreactor with a bed height of 15 cm for the adsorption of cadmium. The percentage removal of cadmium with and without biofilm (substrates) was 90.56 and 70.7%, respectively. The phylogenetic analysis based on 16S rRNA sequencing indicated the isolate to be a representative of Aeromonas diversa (Acc. No. KU560509).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2014) Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater. J Waste Manag 1:6. doi:10.1155/2014/160398

    Article  CAS  Google Scholar 

  • Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97(2):253–261. doi:10.1016/j.carbpol.2013.04.072

    Article  CAS  Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progr Biol Sci 2(1):1–11

    Google Scholar 

  • Arjomandzadegan M, Rafiee P, Moraveji MK, Tayeboon M (2014) Efficacy evaluation and kinetic study of biosorption of nickel and zinc by bacteria isolated from stressed conditions in a bubble column. Asian Pac J Trop Med 7:S194–S198. doi:10.1016/S1995-7645(14)60231-5

    Article  CAS  Google Scholar 

  • Chakraborty J, Das S (2014) Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res 21(24):14188–14201. doi:10.1007/s11356-014-3308-7

    Article  CAS  Google Scholar 

  • Chovanová K, Sládeková D, Kmet V, Proksova M, Harichová J, Puskarova A, Ferianc P (2004) Identification and characterization of eight cadmium resistant bacterial isolates from cadmium-contaminated sewage sludge. Biologia 59(6):817–827

    Google Scholar 

  • Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37(1):318–326

    CAS  Google Scholar 

  • Chu W, Vattem DA, Maitin V, Barnes MB, McLean RJ (2011) Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum. Quor Sens Methods Protoc. doi:10.1007/978-1-60761-971-0_1

    Article  Google Scholar 

  • Crémet L, Corvec S, Batard E, Auger M, Lopez I, Pagniez F, Caroff N (2013) Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli. Diagn Microbiol Infect Dis 75(3):252–255. doi:10.1016/j.diagmicrobio.2012.11.019

    Article  CAS  Google Scholar 

  • Ghane M, Tabandeh F, Bandehpour M, Ghane M (2013) Isolation and characterization of a heavy metal resistant Comamonas sp. from industrial effluents. Iranian. J Sci Technol 37(A2):173

    Google Scholar 

  • Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Biores Technol 99(9):3864–3870. doi:10.1016/j.biortech.2007.06.047

    Article  CAS  Google Scholar 

  • Harish R, Samuel J, Mishra R, Chandrasekaran N, Mukherjee A (2012) Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation 23(4):487–496. doi:10.1007/s10532-011-9527-4

    Article  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. doi:10.1016/j.taap.2009.04.020

    Article  CAS  Google Scholar 

  • Kermani AJN, Ghasemi MF, KhosravanA Farahmand A, Shakibaie MR (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Iran J Environ Health Sci Eng 7(4):279

    CAS  Google Scholar 

  • Manasi Rajesh V, Kumar ASK, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185. doi:10.1016/j.cej.2013.09.016

    Article  CAS  Google Scholar 

  • Mathivanan K, Rajaram R (2014) Tolerance and biosorption of cadmium(II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment. Indian J Geomarine Sci 43(04):580–588

    Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J Pharm Sci Res 7(3):89–97

    CAS  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z (2010) Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Biores Technol 101(24):9742–9748. doi:10.1016/j.biortech.2010.07.105

    Article  CAS  Google Scholar 

  • Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T (2009) Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr(VI), Cd(II), Fe(III) and Ni(II). Chem Eng J 152(1):110–115. doi:10.1016/j.cej.2009.03.039

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002

    Article  CAS  Google Scholar 

  • Ramírez-Castillo ML, Uribelarrea JL (2004) Improved process for exopolysaccharide production by Klebsiella pneumoniae sp. pneumoniae by a fed-batch strategy. Biotechnol Lett 26(16):1301–1306. doi:10.1023/B:BILE.0000044923.02460.de

    Article  Google Scholar 

  • Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A (2013) Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Biores Technol 128:423–430. doi:10.1016/j.biortech.2012.10.116

    Article  CAS  Google Scholar 

  • Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Biores Technol 102(2):677–682. doi:10.1016/j.biortech.2010.08.041

    Article  CAS  Google Scholar 

  • Sundar K, Mukherjee A, Sadiq M, Chandrasekaran N (2011) Cr(III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin. J Hazard Mater 187(1):553–561. doi:10.1016/j.jhazmat.2011.01.077

    Article  CAS  Google Scholar 

  • Talagrand-Reboul E, Jumas-Bilak E, Lamy B (2017) The social life of Aeromonas through biofilm and quorum sensing systems. Front Microbiol. doi:10.3389/fmicb.2017.00037

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226. doi:10.1016/j.biotechadv.2008.11.002

    Article  CAS  Google Scholar 

  • Xiong C, Wang W, Tan F, Luo F, Chen J, Qiao X (2015) Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. J Hazard Mater 299:664–674. doi:10.1016/j.jhazmat.2015.08.008

    Article  CAS  Google Scholar 

  • Yan R, Yang F, Wu Y, Hu Z, Nath B, Yang L, Fang Y (2011) Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102(21):9927–9932. doi:10.1016/j.biortech.2011.08.049

    Article  CAS  Google Scholar 

  • Zeng X, Tang J, Liu X, Jiang P (2012) Response of P. aeruginosa E1 gene expression to cadmium stress. Curr Microbiol 65(6):799–804. doi:10.1007/s00284-012-0224-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to VIT and its management for providing laboratory facilities for conducting our research successfully. The authors are thankful to the TBI facility in VIT University for carrying out studies using atomic absorption spectrophotometer. We thank Stephen K. Farrand and P. Williams for generously providing us with Chromobacterium violaceum CV026 reporters. The authors would like to thank Dr. V. R. Prabavathy, MSSRF, for her support in the quorum-sensing study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mohanasrinivasan.

Additional information

Editorial responsibility: J. Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itusha, A., Mohanasrinivasan, V. Bioremoval of cadmium using a dual-chambered fluidized bed bioreactor: a biofilm-based approach. Int. J. Environ. Sci. Technol. 15, 2637–2646 (2018). https://doi.org/10.1007/s13762-017-1492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1492-y

Keywords

Navigation