Skip to main content
Log in

Utilization of agro-waste for removal of toxic hexavalent chromium: surface interaction and mass transfer studies

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Abundantly available agricultural waste materials (banana bunch, sorghum stem and casuarinas fruit) are processed with negligible cost and are found to be highly suitable as biosorbents for chromium(VI) removal from aqueous environment due to high surface area and functional groups of adsorbents. The equilibrium data have been analyzed for the adsorbate–adsorbate/adsorbent interactions and found to be fitted to the data in the order, Hill–de Boer ≥ Fowler–Guggenheim ≅ Frumkin > Kiselev. To determine the characteristic parameters for process design, mass transfer studies have been carried out using two-parameter isotherm models (Harkins–Jura, Halsey, Smith, El-Awady and Flory–Huggins) and three-parameter isotherm models (Redlich–Peterson and Sips) which are applied to the experimental data. The fitness of the isotherms describes that both mono- and multilayer adsorptions occur in the present studied three biosorbents in preference to the latter. The mechanism of adsorption has been studied using diffusion kinetic models (viz. liquid film diffusion, Dunwald–Wagner intra-particle diffusion model and moving boundary model) and described the possibility of diffusion in the order of banana bunch–stem powder > sorghum stem powder > casuarinas fruit powder in terms of diffusion coefficients. In essence of all the results, the selected adsorbents can be used as a potential adsorbent for the removal of Cr(VI) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abderrahim O, Ferrah N, Didi MA, Villemin D (2011) A new sorbent for europium nitrate extraction: phosphonic acid grafted on polystyrene resin. J Radioanal Nucl Chem 290(2):267–275

    Article  CAS  Google Scholar 

  • Arabloo M, Ghazanfari MH, Rashtchian D (2015) Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: a comparative study. J Taiwan Inst Chem E 50:12–23

    Article  CAS  Google Scholar 

  • ASTM (1972) Annual book of ASTM standards part-23. American society for testing and materials, Philadelphia

    Google Scholar 

  • Aytas S, Turkozu DA, Gok C (2011) Biosorption of uranium (VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280(1):354–362

    Article  CAS  Google Scholar 

  • Cattani E, Costa MJ, Torricella F, Levizzani V, Silva AM (2006) Influence of aerosol particles from biomass burning on cloud microphysical properties and radioactive forcing. Atmos Res 82(1):310–327

    Article  CAS  Google Scholar 

  • Cazalbou S, Bertrand G, Drouet C (2015) Tetracycline-loaded biomimetic apatite: an adsorption study. J Phys Chem B 119(7):3014–3024

    Article  CAS  Google Scholar 

  • Cieślak-Golonka M (1996) Toxic and mutagenic effects of chromium (VI) A review. Polyhedron 15(21):3667–3689

    Article  Google Scholar 

  • Davoudinejad M, Ghorbanian SA (2013) Modeling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concept of Adsorption Effective Surface (AES). Sci Res Essays 8(46):2263–2275

    Google Scholar 

  • De Boer JH (1953) The dynamical character of adsorption. Oxford University Press, Oxford

    Google Scholar 

  • Deans JR, Dixon BG (1992) Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Res 26(4):469–472

    Article  CAS  Google Scholar 

  • Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1):51–61

    Article  CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37(3):399–403

    Article  CAS  Google Scholar 

  • Fowler RH, Guggenheim EA (1949) Statistical thermodynamics. Cambridge University Press, London, pp 431–450

    Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G et al (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2(1):239–259

    Article  CAS  Google Scholar 

  • Gobara M, Baraka A, Zaghloul B (2015) Green corrosion inhibitor for carbon steel in sulfuric acid medium from “Calotropis Gigantiea” latex. Res Chem Intermed 41(12):9885–9901

    Article  CAS  Google Scholar 

  • Gustafsson Ö, Kruså M, Zencak Z et al (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498

    Article  CAS  Google Scholar 

  • Guyon P, Frank GP, Welling M et al (2005) Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia. Atmos Chem Phys 5(11):2989–3002

    Article  CAS  Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16(10):931–937

    Article  CAS  Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147(1):381–394

    Article  CAS  Google Scholar 

  • Hill TL (1946) Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption. J Chem Phys 14(7):441–453

    Article  CAS  Google Scholar 

  • Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46(1):151–158

    Article  CAS  Google Scholar 

  • IARI (2012) Crop residues management with conservation agriculture: potential, constraints and policy needs. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Igwe JC, Abia AA (2003) Maize cob and husk as adsorbents for removal of Cd, Pb and Zn ions from wastewater. Phys Sci 2(8):83–94

    Google Scholar 

  • Imaga C, Abia AA (2015) Kinetics and mechanisms of chromium (VI) ion sorption using carbonized and modified sorghum (Sorghum bicolor) hull of two pore sizes (CMSH 150 µm and 250µm. Int J Chem Process Eng Res 2(4):44–58

    Article  Google Scholar 

  • Irwin A (2014) Black carbon: tackling crop-residue burning in South Asia. Glob Change 83:8–11

    Google Scholar 

  • Ismail Z, Bedderi AM (2009) Potential of water hyacinth as a removal agent for heavy metals from petroleum refinery effluents. Water Air Soil Pollut 199(1–4):57–65

    Article  CAS  Google Scholar 

  • Ismail Z, Salim K, Othman SZ et al (2013a) Determining and comparing the levels of heavy metal concentrations in two selected urban river water. Measurement 46(10):4135–4144

    Article  Google Scholar 

  • Ismail Z, Tai JC, Kong KK et al (2013b) Using data envelopment analysis in comparing the environmental performance and technical efficiency of selected companies in their global petroleum operations. Measurement 46(9):3401–3413

    Article  Google Scholar 

  • Jovanović DS (1969) Physical adsorption of gases. I: isotherms for monolayer and multilayer adsorption. Colloid Polym Sci 235:1203–1214

    Google Scholar 

  • Jura G, Harkins WD (1946) Surfaces of solids. XIV. A unitary thermodynamic theory of the adsorption of vapors on solids and of insoluble films on liquid subphases. J Am Chem Soc 68(10):1941–1952

    Article  CAS  Google Scholar 

  • Karaca S, Gürses A, Ejder M, Açıkyıldız M (2006) Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater 128(2):273–279

    Article  CAS  Google Scholar 

  • Karthikaiselvi R, Subhashini S (2014) Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline). J Assoc Arab Univ Basic Appl Sci 16:74–82

    Google Scholar 

  • Kiselev AV (1958) Vapor adsorption in the formation of adsorbate molecule complexes on the surface. Kolloid Zhur 20:338–348

    CAS  Google Scholar 

  • Koubaissy B, Toufaily J, El-Murr M et al (2012) Adsorption kinetics and equilibrium of phenol drifts on three zeolites. Cent Eur J Eng 2(3):435–444

    CAS  Google Scholar 

  • Kumar PA, Ray M, Chakraborty S (2007) Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater 143(1):24–32

    Article  CAS  Google Scholar 

  • Kumar KY, Muralidhara HB, Arthoba NY, Balasubramanyam J et al (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136

    Article  CAS  Google Scholar 

  • Kumara NT, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P (2014) Equilibrium isotherm studies of adsorption of pigments extracted from kuduk-kuduk (Melastoma Malabathricum L.) pulp onto TIO2 nanoparticles. J Chem. doi:10.1155/2014/468975

    Google Scholar 

  • Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12(4):1461–1478

    Article  CAS  Google Scholar 

  • Li X, Li A, Long M, Tian X (2015) Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China. J Environ Health Sci Eng 13(1):13–21

    Article  Google Scholar 

  • Mishra SP (2014) Adsorption–desorption of heavy metal ions. Curr Sci 107(4):601–612

    CAS  Google Scholar 

  • Nwabanne JT, Okafor VN (2012) Adsorption and thermodynamics study of the inhibition of corrosion of mild steel in H2SO4 medium using Vernonia amygdalina. JMMCE 11(9):885

    Article  Google Scholar 

  • Obot IB, Obi-Egbedi N, Umoren SA (2009) Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid. Int J Electrochem Sci 4(6):863–877

    CAS  Google Scholar 

  • Orr PT, Jones GJ, Hamilton GR (2004) Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide: implications for compliance with the Australian drinking water guidelines. Water Res 38(20):4455–4461

    Article  CAS  Google Scholar 

  • Prapagdee S, Piyatiratitivorakul S, Petsom A (2014) Activation of cassava stem biochar by physico-chemical method for stimulating chromium removal efficiency from aqueous solution. Environ Asia 7(2):60–69

    Google Scholar 

  • Prasad RK, Srivastava SN (2009) Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. Chem Eng J 146(1):90–97

    Article  Google Scholar 

  • Raji F, Pakizeh M (2014) Kinetic and thermodynamic studies of Hg(VI) adsorption onto MCM-41 modified by ZnCl2. Appl Surf Sci 301:568–575

    Article  CAS  Google Scholar 

  • Ramya PM, Jayasravanthi M, Venkata NR, Dulla BJ (2015a) Chemical oxygen demand reduction from coffee processing waste water: a comparative study on usage of biosorbents prepared from agricultural wastes. GNEST J 17(172):291–300

    Google Scholar 

  • Ramya PM, Jayasravanthi M, Venkata NR (2015b) Kinetic, thermodynamic and equilibrium studies on removal of hexavalent chromium from aqueous solutions using agro-waste biomaterials, Casuarina equisetifolia L. and Sorghum bicolor. Korean J Chem Eng 33(8):2374–2383. doi:10.1007/s11814-016-0078-6

    Google Scholar 

  • Ramya PM, Jayasravanthi M, Venkata NR (2016) Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor. Pol J Chem Technol 18(2):1–10. doi:10.1515/pjct-2016-0031

    Article  Google Scholar 

  • Rana P, Mohan N, Rajagopal C (2004) Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res 38(12):2811–2820

    Article  CAS  Google Scholar 

  • Rathnakumar S, Sheeja RY, Murugesan T (2009) Removal of copper (VI) from aqueous solutions using teak (Tectona grandis Lf) leaves. Int J Chem Mol Nucl Mater Metall Eng 3(8):433–437

    Google Scholar 

  • Sabirneeza AA, Subhashini S (2014) Poly (vinyl alcohol–proline) as corrosion inhibitor for mild steel in 1 M hydrochloric acid. Int J Ind Chem 5(3–4):111–120

    Article  Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KV, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading: a study over Punjab State, India. Ann Geophys Atmos Hydrosp 28(2):367–379

    Article  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16(5):490–495

    Article  CAS  Google Scholar 

  • USDHHS, US Department of Health and Human Services (1991) Toxicological Profile for Chromium. Public Health Service Agency for Toxic substances and Diseases Registry, Washington, DC

    Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Inter-annual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6(11):3423–3441

    Article  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010) Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization. Sep Sci Technol 45(9):1313–1325

    Article  CAS  Google Scholar 

  • WHO, World Health Organization (2004) Guidelines for drinking-water quality, 3rd edn. Recommendations, Geneva

    Google Scholar 

  • Yonli AH, Khalid M, Batonneau-Gener I et al (2011) Removal of phenolic pollutants from water over BEA and HY zeolites in batch conditions. J Chem Chem Eng 5(5):429–434

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Acharya Nagarjuna University, SAIF (IIT-Madras), and Bangalore Institute of Technology for providing the support for conducting the research work and analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Ratnakaram.

Additional information

Editorial responsibility: H.N. Hsieh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokkapati, R.P., Ratnakaram, V.N. & Mokkapati, J.S. Utilization of agro-waste for removal of toxic hexavalent chromium: surface interaction and mass transfer studies. Int. J. Environ. Sci. Technol. 15, 875–886 (2018). https://doi.org/10.1007/s13762-017-1443-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1443-7

Keywords

Navigation