Skip to main content
Log in

Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study investigated the removal of triethylamine using a biotrickling filter. The influence of affecting parameters, such as height and recirculation liquid rate (V L) on contaminant removal efficiency, was examined in detail. The results demonstrated that in the constant empty bed residence time (EBRT), when V L was increased, the removal efficiency (RE) increased. Also, for a specific V L, increasing EBRT could also increase RE values. However, it seems that an increasing V L is a more cost-effective way to enhance RE as compared to an increasing EBRT. The obtained outcomes represented that for a constant EBRT, an increase in inlet loading (IL) could decrease RE. For lower ILs, the removal of the contaminant could be carried out faster in height. The first part of the bed contributed the most to contaminant removal, and for the lower ILs, the contribution was even further. For the first section of bed in a constant IL, increasing EBRT could increase RE. In a constant IL and EBRT, increasing V L could increase RE, as well as the removed mass loading by at least 20–25 g/m3/h. Also, the effect of the V L increase on removal amount in the second and third sections of the bed was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akesson B, Skerfving S, Mattiasson L (1988) Experimental study on the metabolism of triethylamine in man. Br J Ind Med 45:262–268

    CAS  Google Scholar 

  • An T, Wan S, Li G, Sun L, Guo B (2010) Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J Hazard Mater 183:372–380. doi:10.1016/j.jhazmat.2010.07.035

    Article  CAS  Google Scholar 

  • Avalos Ramirez A, Peter Jones J, Heitz M (2009) Control of methanol vapours in a biotrickling filter: performance analysis and experimental determination of partition coefficient. Bioresour Technol 100:1573–1581. doi:10.1016/j.biortech.2008.08.049

    Article  Google Scholar 

  • Balasubramanian P, Philip L, Murty Bhallamudi S (2012) Biotrickling filtration of complex pharmaceutical VOC emissions along with chloroform. Bioresour Technol 114:149–159. doi:10.1016/j.biortech.2012.03.035

    Article  CAS  Google Scholar 

  • Chheda D, Sorial GA (2016) Effect of a ternary mixture of volatile organic compounds on degradation of TCE in biotrickling filter systems. Water Air Soil Pollut 227:1–11

    Article  CAS  Google Scholar 

  • Cox HHJ, Deshusses MA (2002) Effect of starvation on the performance and reacclimation of biotrickling filters for air pollution control. Environ Sci Technol 36:3069–3073

    Article  CAS  Google Scholar 

  • Delhoménie MC, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72

    Article  Google Scholar 

  • Devinny JS, Deshusses MA, webester TS (1999) Biofiltration for air pollution control. Lewis Publishers, Boca Raton

    Google Scholar 

  • Fortin NY, Deshusses MA (1999) Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics. Environ Sci Technol 33:2980–2986

    Article  CAS  Google Scholar 

  • He Z et al (2009) Comparative study of the eliminating of waste gas containing toluene in twin biotrickling filters packed with molecular sieve and polyurethane foam. J Hazard Mater 167:275–281. doi:10.1016/j.jhazmat.2008.12.116

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2001) Bioreactors for waste gas treatment. Springer, Netherlands

    Book  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Article  CAS  Google Scholar 

  • Kesson B, Floren I, Skerfving S (1985) Visual disturbances after experimental human exposure to triethylamine. Br J Ind Med 42:848–850

    CAS  Google Scholar 

  • Lee S-H, Li C, Heber AJ, Zheng C (2010) Ethylene removal using biotrickling filters: part I experimental description. Chem Eng J 158:79–88. doi:10.1016/j.cej.2009.12.033

    Article  CAS  Google Scholar 

  • Liu Q, Babajide AE, Zhu P, Zou LP (2006) Removal of xylene from waste gases using biotrickling filter. Chem Eng Technol 29:320–325

    Article  CAS  Google Scholar 

  • Liu Q et al (2009) Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Manag 29:2051–2058

    Article  CAS  Google Scholar 

  • Mehrdadi N, Azimi A, Mirmohammadi M (2010) Removal of triethylamine vapor from waste gases by biotrickling filter. Iran J Environ Health Sci Eng 7:337

    CAS  Google Scholar 

  • Mirmohammadi M, Bayat R, Shirazi HK, Sotoudeheian S (2014) Effect of empty bed residence time on biotrickling filter performance: case study—triethylamine. Int J Environ Sci Technol 11:183–190

    Article  CAS  Google Scholar 

  • Montes M, Daugulis AJ, Veiga MC, Kennes C (2010) Removal of α-pinene from waste gases in biotrickling filters with the addition of silicone oil or polymers. J Biotechnol 150(Supplement):221. doi:10.1016/j.jbiotec.2010.09.048

    Article  Google Scholar 

  • Moussavi G, Mohseni M (2008) The treatment of waste air containing phenol vapors in biotrickling filter. Chemosphere 72:1649–1654. doi:10.1016/j.chemosphere.2008.05.040

    Article  CAS  Google Scholar 

  • Mudliar S et al (2010) Bioreactors for treatment of VOCs and odours–a review. J Environ Manage 91:1039–1054

    Article  CAS  Google Scholar 

  • Pohanish RP (2012) Sittig’s handbook of toxic and hazardous chemicals and carcinogens, 6th edn. Elsevier, Oxford

    Google Scholar 

  • Raboni M, Torretta V, Viotti P (2017) Treatment of airborne BTEX by a two-stage biotrickling filter and biofilter, exploiting selected bacterial and fungal consortia. Int J Environ Sci Technol 14(1):19–28

    Article  CAS  Google Scholar 

  • Rene ER, Montes M, Veiga MC, Kennes C (2011) Styrene removal from polluted air in one and two-liquid phase biotrickling filter: steady and transient-state performance and pressure drop control. Bioresour Technol 102:6791–6800. doi:10.1016/j.biortech.2011.04.010

    Article  CAS  Google Scholar 

  • Sakuma T, Hattori T, Deshusses MA (2006) Comparison of different packing materials for the biofiltration of air toxics. J Air Waste Manag Assoc 56:1567–1575

    Article  CAS  Google Scholar 

  • Sempere F, Gabaldón C, Martínez-Soria V, Marzal P, Penya-roja JM, Javier Álvarez-Hornos F (2008) Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading. Chemosphere 73:1533–1539. doi:10.1016/j.chemosphere.2008.08.037

    Article  CAS  Google Scholar 

  • TOXNET-Hazardous Substances Data Bank (2011) National Library of Medicine (US). https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

  • Van Agteren MH, Keuning S, Oosterhaven J (2013) Handbook on biodegradation and biological treatment of hazardous organic compounds, vol 2. Springer, New York

    Google Scholar 

  • Van Groenestijn J, Kraakman N (2005) Recent developments in biological waste gas purification in Europe. Chem Eng J 113:85–91

    Article  Google Scholar 

  • Wang L et al (2014) Enhanced removal of ethylbenzene from gas streams in biotrickling filters by tween-20 and Zn (II). J Environ Sci 26:2500–2507

    Article  Google Scholar 

  • Wei Z, Huang Q, Ye Q, Chen Z, Li B, Wang J (2015) Thermophilic biotrickling filtration of gas–phase trimethylamine. Atmos Pollut Res 6:428–433

    Article  CAS  Google Scholar 

  • Yu J-M, Chen J-M, Wang J-D (2006) Removal of dichloromethane from waste gases by a biotrickling filter. J Environ Sci 18:1073–1076. doi:10.1016/S1001-0742(06)60041-7

    Article  CAS  Google Scholar 

  • Yang B, Niu X, Ding C, Xu X, Liu D (2013) Performance of biotrickling filter inoculated with activated sludge for chlorobenzene removal. Procedia Environ Sci 18:391–396. doi:10.1016/j.proenv.2013.04.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to the laboratory staff of the Department of Environmental Engineering, Faculty of Environment, Tehran University, for their support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sotoudeheian.

Additional information

Editorial responsibiility: R. Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmohammadi, M., Sotoudeheian, S. & Bayat, R. Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance. Int. J. Environ. Sci. Technol. 14, 1615–1624 (2017). https://doi.org/10.1007/s13762-017-1273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1273-7

Keywords

Navigation