Skip to main content

Advertisement

Log in

Biodiesel synthesis from non-edible oils by transesterification using the activated carbon as heterogeneous catalyst

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The need for renewable environmentally friendly energy resources is growing every day. Biodiesel is one of the most promising alternatives to the conventional non-renewable energy resources. Heterogeneous catalysts proved a high efficiency in the transesterification of oils to produce biodiesel. In this research, activated carbon was tested as a heterogeneous catalyst in the transesterification of two non-edible oils (waste cooking oil and Jatropha oil) with methanol to produce biodiesel. Activated carbon was characterized using X-ray diffraction, scanning electron microscope and Fourier transformed infrared. The effect of different operating parameters, namely operation time (30, 60, 120 and 180 min), alcohol-to-oil molar ratio (4:1, 6:1, 8:1 and 10:1), catalyst loading [0.5, 1, 2, 3 and 5% (w/w)] and rotational speed (100, 200, 300 and 400 rpm), was investigated. Results showed that increasing the operational time, the alcohol-to-oil molar ratio and the catalyst loading increases the conversion to biodiesel but only to some extent; increasing the stirring rate was found to be beneficial to the process. The optimum conditions were found to be 2 h of heating, 6:1 alcohol-to-oil ratio, 1 wt% catalyst loading and 400 rpm stirring. Under optimum conditions, the conversion to biodiesel reached 93.95 and 93.27% for the waste cooking oil and the Jatropha oil, respectively. The properties of the obtained biodiesel (density, viscosity, flash point, pour point and cloud point) were measured giving promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal M, Chauhan G, Chaurasia SP, Singh K (2012) Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. J Taiwan Inst Chem Eng 43:89–94

    Article  CAS  Google Scholar 

  • Al-Saadi AA, Saleh TA, Gupta VK (2013) Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires. J Mol Liq 188:136–142

    Article  CAS  Google Scholar 

  • Ashraful AM, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Imtenan S, Shahir SA, Mobarak HM (2014) Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manag 80:202–228

    Article  CAS  Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef SA (2012) Comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093

    Article  Google Scholar 

  • Basir FA, Datta S, Roy PK (2015) Studies on biodiesel production from Jatropha curcas oil using chemical and biochemical methods—a mathematical approach. Fuel 158:503–511

    Article  CAS  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    Article  CAS  Google Scholar 

  • Buasri A, Chaiyut N, Loryuenyong V, Phakdeepataraphan E, Watpathomsub S, Kunakemakorn V (2013) Synthesis of activated carbon using agricultural wastes from biodiesel production. Int J Chem Nucl Mater Metall Eng 7(1):98–102

    Google Scholar 

  • Cai Z-Z, Wang Y, Teng Y-L, Chong K-M, Wang J-W, Zhang J-W, Yang D-P (2015) A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process Technol 137:186–193

    Article  CAS  Google Scholar 

  • Campanelli P, Banchero M, Manna L (2010) Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel 89:3675–3682

    Article  CAS  Google Scholar 

  • Canakci M, Erdil A, Arcaklioglu E (2006) Performance and exhaust emissions of a biodiesel engine. Appl Energy 83:594–605

    Article  CAS  Google Scholar 

  • de Araújo CDM, de Andrade CC, de Silva ES, Dupas FA (2013) Biodiesel production from used cooking oil: a review. Renew Sustain Energy Rev 27:445–452

    Article  Google Scholar 

  • Demirbas A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  CAS  Google Scholar 

  • Dharma S, Masjuki HH, Ong HC, Sebayang AH, Silitonga AS, Kusumo F, Mahlia TMI (2016) Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Convers Manag 115:178–190

    Article  CAS  Google Scholar 

  • Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991

    Article  CAS  Google Scholar 

  • Dossin TF, Reyniers M-F, Marin GB (2006) Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B Environ 62:35–45

    Article  CAS  Google Scholar 

  • Eevera T, Rajendran K, Saradha S (2009) Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy 34:762–765

    Article  CAS  Google Scholar 

  • Endalew AK, Kiros Y, Zanzi R (2011) Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 36:2693–2700

    Article  CAS  Google Scholar 

  • Fogler HS (2010) Essentials of chemical reaction engineering. Prentice Hall, New Jersey

    Google Scholar 

  • Foo KY, Hameed BH (2009) Utilization of biodiesel waste as a renewable resource for activated carbon: application to environmental problems. Renew Sustain Energy Rev 13:2495–2504

    Article  CAS  Google Scholar 

  • Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 161:1638–1643

    Article  Google Scholar 

  • Gardy J, Hassanpour A, Lai X, Ahmed MH (2016) Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl Catal A Gen 527:81–95

    Article  CAS  Google Scholar 

  • Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70:249–253

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17

    Article  CAS  Google Scholar 

  • Hawash S, El Diwani G, Abdel Kader E (2011) Optimization of biodiesel production from jatropha oil by heterogeneous base catalysed transesterification. Int J Eng Sci Technol 3(6):5242–5251

    Google Scholar 

  • Heikal EK, Khalil SA, Abdou IK (2013) Jatropha bio-diesel production technologies. IJBBB 3:288–291

    Article  Google Scholar 

  • Issariyakul T, Dalai AK (2014) Biodiesel from vegetable oils. Renew Sustain Energy Rev 31:446–471

    Article  CAS  Google Scholar 

  • Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ 85:86–91

    Article  CAS  Google Scholar 

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sustain Energy Rev 14:763–771

    Article  CAS  Google Scholar 

  • Jameel U, Zhu M, Tikkanen W, Chen X, Tong Z (2016) Recent fuel cell progress in nano gold hybrid materials for oxygen reduction reaction in alkaline media. Mater Res Bull 84:185–211

    Article  CAS  Google Scholar 

  • Kafuku G, Lee K, Mbarawa M (2010) The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chem Pap 64(6):734–740

    Article  CAS  Google Scholar 

  • Kalam MA, Masjuki HH, Jayed MH, Liaquat AM (2011) Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy 36:397–402

    Article  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2016) Biorefineries-industrial processes and products. Ullmann’s Encyclopedia of Industrial, Chemistry, pp 1–38

    Google Scholar 

  • Kartika IA, Yani M, Ariono D, Evon Ph, Rigal L (2013) Biodiesel production from jatropha seeds: solvent extraction and in situ transesterification in a single step. Fuel 106:111–117

    Article  Google Scholar 

  • Knothe G, Sharp CA, Ryan TW (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel 20:403–408

    Article  CAS  Google Scholar 

  • Koh MY, Ghazi M, Idaty T (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev 15:2240–2251

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2011) Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: a breakthrough for SO4 2−/SnO2–SiO2 catalyst. Fuel Process Technol 92:1639–1645

    Article  CAS  Google Scholar 

  • Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43:7887–7916

    Article  CAS  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energ 87:1083–1095

    Article  CAS  Google Scholar 

  • Lin L, Ying D, Chaitep S, Vittayapadung S (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl Energy 86:681–688

    Article  CAS  Google Scholar 

  • Lopez JM, Gomez A, Aparicio F, Javier Sanchez F (2009) Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid. Appl Energy 86:610–615

    Article  CAS  Google Scholar 

  • Luque R (2010) Algal biofuels: the eternal promise? Energy Environ Sci 3:254–257

    Article  CAS  Google Scholar 

  • Luque R, Lovett CJ, Datta B, Clancy J, Campelo JM, Romero AA (2010) Biodiesel: a feasible petrol fuel replacement. Energy Environ Sci 3:1706–1721

    Article  CAS  Google Scholar 

  • Ma F, Clements LD, Hanna MA (1998) The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans Am Soc Agric Eng 41:1261–1264

    Article  CAS  Google Scholar 

  • Mahto TK, Jain R, Chandra S, Roy D, Mahto V, Sahu SK (2016) Single step synthesis of sulfonic group bearing graphene oxide: a promising carbo-nano material for biodiesel production. J Environ Chem Eng 4(3):2933–2940

    Article  CAS  Google Scholar 

  • Meng X, Chen G, Wang Y (2008) Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol 89:851–857

    Article  CAS  Google Scholar 

  • Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, Hazrat MA (2013) Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: a review. Renew Sustain Energy Rev 28:441–455

    Article  CAS  Google Scholar 

  • Mudge SM, Pereira G (1999) Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Sci Technol Bull 5:353–355

    Article  CAS  Google Scholar 

  • Narayanan V, Stephen A (2013) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33:2235–2244

    Article  Google Scholar 

  • Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496

    Article  CAS  Google Scholar 

  • Qian J, Shi H, Yun Z (2010) Preparation of biodiesel from Jatropha curcas L. oil produced by two-phase solvent extraction. Bioresour Technol 101:7025–7031

    Article  CAS  Google Scholar 

  • Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012a) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res 19:1224–1228

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012b) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Colloid Interface Sci 371:101–106

    Article  CAS  Google Scholar 

  • Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53

    CAS  Google Scholar 

  • Saleh TA, Al-Saadi AA, Gupta VK (2014) Carbonaceous adsorbent prepared from waste tires: experimental and computational evaluations of organic dye methyl orange. J Mol Liq 191:85–91

    Article  CAS  Google Scholar 

  • Sano N, Yamada K, Tsunauchi S, Tamon H (2017) A novel solid base catalyst for transesterification of triglycerides toward biodiesel production: carbon nanohorn dispersed with calcium ferrite. Chem Eng J 307:135–142

    Article  CAS  Google Scholar 

  • Santos IB, Acchar W, Goncalves JN, Segadães AN (2015) Bactericidal potential of titania and silver nano powders deposited in porous ceramic substrates for low-power water purification reactors. Mater Today 2(1):242–245

    Article  Google Scholar 

  • Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125:277–280

    Article  CAS  Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013a) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33:91–98

    Article  CAS  Google Scholar 

  • Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013b) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33:2235–2244

    Article  CAS  Google Scholar 

  • Saravanan R, Gracia F, Khan MM, Poornima V, Gupta VK, Narayanan V, Stephen A (2015) ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J Mol Liq 209:374–380

    Article  CAS  Google Scholar 

  • Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J (2010) Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy 87:2589–2596

    Article  CAS  Google Scholar 

  • Speidel HK, Lightner RL, Ahmed I (2000) Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use. Appl Biochem Biotechnol 84–86:879–897

    Google Scholar 

  • Srilatha K, Issariyakul T, Lingaiah N, Prasad PSS, Kozinski J, Dalai AK (2010) Efficient esterification and transesterification of used cooking oil using 12-tungstophosphoric acid (TPA)/Nb2O5 catalyst. Energy Fuels 24:4748–4755

    Article  CAS  Google Scholar 

  • Takase M, Zhao T, Zhang M, Chen Y, Liu H, Yang L, Xiangyang X (2015) An expatiate review of neem, Jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev 43:495–520

    Article  CAS  Google Scholar 

  • Talebian-Kiakalaieh A, Amin NAS, Zarei A, Jaliliannosrati H (2013) Biodiesel production from high free fatty acid waste cooking oil by solid acid catalyst. In: Proceedings of the 6th international conference on process systems engineering (PSE ASIA) 25–27 June 2013, Kuala Lumpur

  • Tan KT, Lee KT, Mohamed AR (2011) Potential of waste palm cooking oil for catalyst-free biodiesel production. Energy 36:2085–2088

    Article  CAS  Google Scholar 

  • Torres-Rodríguez DA, Romero-Ibarra IC, Ibarra IA, Pfeiffer H (2016) Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renew Energy 93:323–331

    Article  Google Scholar 

  • Van Kasteren JMN, Nisworo AP (2007) A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycl 50:442–458

    Article  Google Scholar 

  • Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energy Rev 18:184–193

    Article  CAS  Google Scholar 

  • Yeom C, Kim Y (2016) Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge. J Ind Eng Chem 40:47–53

    Article  CAS  Google Scholar 

  • Yusuf NNAN, Kamarudin SK (2013) Techno-economic analysis of biodiesel production Jatropha curcas via a supercritical methanol process. Energy Convers Manag 75:710–717

    Article  CAS  Google Scholar 

  • Yusuf NNAN, Kamarudin SK, Yaakob Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manag 52:2741–2751

    Article  CAS  Google Scholar 

  • Zanette AF, Barella RA, Pergher SBC, Treichel H, Oliveira D, Mazutti MA, Silva EA, Oliveira JV (2011) Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts. Renew Energy 36:726–731

    Article  CAS  Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Agriculture Researches Station (Ismailia, Egypt) which provided the Jatropha seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. O. Fouad.

Additional information

Editorial responsibility: V.K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, D.A., Farag, H.A., Amin, N.K. et al. Biodiesel synthesis from non-edible oils by transesterification using the activated carbon as heterogeneous catalyst. Int. J. Environ. Sci. Technol. 14, 785–794 (2017). https://doi.org/10.1007/s13762-016-1184-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1184-z

Keywords

Navigation