Skip to main content
Log in

Bacterial consortium expressing surface displayed, intra- and extracellular lipases and pseudopyronine B for the degradation of oil

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The lipA gene, encoding a solvent-tolerant extracellular lipase from Proteus sp. SW1, was displayed on the cell surface of Escherichia coli by fusing it to an antigen 43 anchoring motif. The display of LipA on the Escherichia coli cell surface was directly confirmed by immunofluorescence microscopy and flow cytometry. After 6 days of incubation in media containing 1 % used cooking oil, an Escherichia coli strain expressing surface displayed lipase was able to degrade 27 % of the oil. The biosurfactant, pseudopyronine B, was purified from culture supernatants of Pseudomonas sp. SL31. Its critical micelle concentration was determined to be 1400 mg/l, and the surfactant was stable within a temperature range from 0 to 120 °C and a pH range of 3–11. Pseudopyronine B-containing crude media extracts efficiently removed up to 51 % of the cadmium from contaminated water. We demonstrated the oil degradation ability of the mixed culture of four bacterial strains, namely the recombinant Escherichia coli expressing cell surface displayed lipase (pKKJlipA), His-tagged lipase (pETlipA), extracellular lipase-producing Proteus sp. SW1, and pseudopyronine B-producing Pseudomonas sp. SL31 by culturing in LB media containing 1 % oil. The consortium degraded 29 % of oil in one day and reached 84 % after 7 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abalos A et al (2004) Enhanced biodegradation of casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15(4):249–260

    Article  CAS  Google Scholar 

  • Gurung N et al (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:1–18

    Article  Google Scholar 

  • Andersen O (1984) Chelation of cadmium. Environ Health Perspect 54:249–266

    Article  CAS  Google Scholar 

  • Becker S et al (2005) A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579(5):1177–1182

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  CAS  Google Scholar 

  • Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol 97(17):2195–2210

    Article  CAS  Google Scholar 

  • Cerqueira VS et al (2011) Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour Technol 102:11003–11010

    Article  CAS  Google Scholar 

  • Chang JS et al (2004) Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ Toxicol Chem 23(12):2816–2822

    Article  Google Scholar 

  • Chang SH et al (2005) Remediation of metal-contaminated soil by an integrated soil washing-electrolysis process. Soil Sediment Contam 14(6):559–569

    Article  CAS  Google Scholar 

  • Chu M et al (2002) Structure of sch 419560, a novel α-pyrone antibiotic produced by Pseudomonas fluorescens. J Antibiot 55(2):215–218

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Bio Rev 61(1):47–64

    CAS  Google Scholar 

  • Dharmsthiti S, Kuhasuntisuk B (1998) Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J Ind Microbiol Biotechnol 21(1–2):75–80

    Article  CAS  Google Scholar 

  • Giddens AC et al (2008) Natural product inhibitors of fatty acid biosynthesis: synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities. Tetrahedron Lett 64(7):1242–1249

    Article  CAS  Google Scholar 

  • Gupta R et al (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54

    Article  CAS  Google Scholar 

  • Hasman H, Chakraborty T, Klemm P (1999) Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181(16):4834–4841

    CAS  Google Scholar 

  • Henderson IR, Owen P (1999) The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving dam and OxyR. J Bacteriol 181(7):2132–2141

    CAS  Google Scholar 

  • Jorfi S et al (2013) Application of biosurfactants produced by Pseudomonas aeruginosa SP4 for bioremediation of soils contaminated by pyrene. Soil Sediment Contam 22(8):890–911

    Article  Google Scholar 

  • Jose J, Maas RM, Teese MG (2012) Autodisplay of enzymes—molecular basis and perspectives. J Biotechnol 161(2):92–103

    Article  CAS  Google Scholar 

  • Juwarkar AA et al (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    Article  CAS  Google Scholar 

  • Kim J, Vipulanandan C (2006) Removal of lead from contaminated water and clay soil using a biosurfactant. J Environ Eng 132:777–786

    Article  CAS  Google Scholar 

  • Kjaergaard K et al (2002) Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J Bacteriol 184(15):4197–4204

    Article  CAS  Google Scholar 

  • Koma D et al (2003) Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem 67(7):1590–1593

    Article  CAS  Google Scholar 

  • Lee SH, Lee SY, Park BC (2005) Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications. Appl Environ Microbiol 71(12):8581–8586

    Article  CAS  Google Scholar 

  • Maier RM et al (2001) Remediation of metal-contaminated soil and sludge using biosurfactant technology. Int J Occup Med Environ Health 14(3):241–248

    CAS  Google Scholar 

  • McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5(2–3):95–101

    Article  CAS  Google Scholar 

  • Mongkolthanaruk W, Dharmsthiti S (2002) Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Int Biodeterior Biodegrad 50(2):101–105

    Article  CAS  Google Scholar 

  • Mukherjee AK, Bordoloi NK (2011) Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study. Environ Sci Technol 18(3):471–478

    CAS  Google Scholar 

  • Phugare SS et al (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186(1):713–723

    Article  CAS  Google Scholar 

  • Płaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Technol 50(1):71–77

    Google Scholar 

  • Pornsunthorntawee O et al (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99(6):1589–1595

    Article  CAS  Google Scholar 

  • Robichon C et al (2011) Engineering Escherichia coli BL21 (DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography. Appl Environ Microbiol 77(13):4634–4646

    Article  CAS  Google Scholar 

  • Rodrigues LR et al (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B 49(1):79–86

    Article  CAS  Google Scholar 

  • Rufino RD et al (2012) Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chem Eng Trans 27:61–66

    Google Scholar 

  • Saeki H et al (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100(2):572–577

    Article  CAS  Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66(10):4585–4588

    Article  CAS  Google Scholar 

  • Singh MP et al (2003) Novel alpha-pyrones produced by a marine Pseudomonas sp. F92S91: taxonomy and biological activities. J Antibiot 56:1033–1044

    Article  CAS  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65(1):163–168

    CAS  Google Scholar 

  • Tajmir-Riahi HA (1989) Carbohydrate metal ion complexes. Interaction of d-glucono-1,5-lactone with Zn(II), Cd(II), and Hg(I1) ions in the solid and aqueous solution, studied by 13C-NMR, FT-IR, and X-ray powder diffraction measurements. Can J Chem 67:651–654

    Article  CAS  Google Scholar 

  • Tan H et al (1994) Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci Technol 28(13):2402–2406

    Article  CAS  Google Scholar 

  • Whangsuk W et al (2013) Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production. Mol Biotechnol 53(1):55–62

    Article  CAS  Google Scholar 

  • Youssef NH et al (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported in part by a grant from the Chulabhorn Research Institute and Center of Excellence on Environmental Health and Toxicology, Thailand. Special thanks go to Piyajit Watcharasit for Texas red-conjugated anti-rabbit IgG antibody, Nuchanart Rangkadilok and Supachai Ritruechai for preparative HPLC, Amnart Khongmanee for his kind assistance with fluorescence microscopes, James Dubbs for critical reading and discussion, Pakwilai Chouichit for technical assistance, and also to Piyapol Munpiyamit for photograph preparation. We appreciate the funding by the Royal Golden Jubilee Ph.D. Program (PHD/0144/2554) to Sirinthra Thiengmag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Loprasert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiengmag, S., Chuencharoen, S., Thasana, N. et al. Bacterial consortium expressing surface displayed, intra- and extracellular lipases and pseudopyronine B for the degradation of oil. Int. J. Environ. Sci. Technol. 13, 2067–2078 (2016). https://doi.org/10.1007/s13762-016-1034-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1034-z

Keywords

Navigation