Skip to main content
Log in

Water quality of tropical reservoir based on spatio-temporal variation in phytoplankton composition and physico-chemical analysis

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study assessed the water quality of Mengkuang Reservoir, Penang, Malaysia, by its trophic status according to a Carlson Modified Trophic Index (CMTSI) and by its biological parameters using Shannon–Wiener diversity index (H′) and saprobic index. The study conducted from August 2005 to July 2006 showed that mean values of CMTSI (nutrients), CMTSI (chlorophyll a) and CMTSI (Secchi depth) were 27.18 ± 8.73, 40.63 ± 7.12 and 41.74 ± 6.38, respectively. The mean values of CMTSI indicated that the reservoir was oligotrophic. Mean value of H′ was 2.15 bits/individual, showing that the water quality based on H′ value was in class III (slightly polluted). Saprobic index value (2.24) also revealed that the reservoir was moderately polluted (class II). The occurrence of Anabaena, Microcystis, Oscillatoria, Nostoc, Dinobryon, Chroococcus, Staurastrum paradoxum and Mallomonas which are indicators of toxic and polluted waters was also recorded. This study therefore showed the importance of phytoplankton composition and community structure as a reliable and important tool to assess the degree of pollution in Mengkuang Reservoir. Long-term assessments of biological and chemical parameters in the reservoir are necessary, and phytoplankton community structure as bioindicator provides unique information about the ecosystem. This information is potentially useful as an early warning sign of deteriorating condition and thus gives insight into the overall ecology of lakes and will assist in the future conservation and management of this lentic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali AB, Lee KY (1995) Chenderoh Reservoir, Malaysia: a characterization of a small-scale, multigear and multispecies artisanal fishery in the tropics. Fish Res 23:267–281

    Article  Google Scholar 

  • Ansbaek J, Valatka S (2001) Surface water classification and implementation strategy. Danish Environmental Protection Agency, DANCEE and the Ministry of Environment of Lithuania, Technical Report No. 1.1, pp 54

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn, American Public Health Association

  • Azrina MZ, Yap CK, Ismail AR, Ismail A, Tan SG (2006) Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotox Environ Safe 64:337–347

    Article  CAS  Google Scholar 

  • Begliutti B, Buscarinu P, Marras G, Sechi GM, Sulis A (2007) Reservoirs water-quality characterization for optimization modelling under drought conditions. Part 1—reservoirs trophic state characterization. In: Rossi G, Vega T, Bonaccorso B (eds) Methods and Tools for Drought Analysis and Management. Springer, The Netherlands, pp 239–261

    Chapter  Google Scholar 

  • Behrenfeld MJ, Boss E (2006) Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J Mar Res 64:431–451

    Article  CAS  Google Scholar 

  • Bollinger JE, Steinberg LJ, Harrison MJ, Crews JP, Englande AJ, Velasco-González C, White LE, George WJ (1999) Comparative analysis of nutrient data in the lower Mississippi River. Wat Res 33:2627–2632

    Article  CAS  Google Scholar 

  • Boyd CE, Tucker CS (1992) Water quality and pond soil analyses for aquaculture. Auburn University, Birmingham, Alabama, Alabama agricultural experiment station

    Google Scholar 

  • Brower JE, Zar JH, von Ende CN (1998) Field and laboratory methods for general ecology, 4th edn. WCB McGraw-Hill, New York, p 273

    Google Scholar 

  • Buraschi E, Salerno F, Monguzzi C, Barbiero B, Tartari G (2005) Characterization of the Italian lake-types and identification of their reference sites using anthropogenic pressure factors. J Limnol 64(1):75–84

    Article  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32(6):831–849

    Article  CAS  Google Scholar 

  • Danilov RA, Ekelund NGA (2001) Comparative studies on the usefulness of seven ecological indices for the marine coastal monitoring close to the shore on the Swedish East Coast. Environ Monit Assess 66:265–279

    Article  CAS  Google Scholar 

  • Delong MD, Brusven MA (1993) Storage and decomposition of particulate organic matter along the longitudinal gradient of an agriculturally-impacted stream. Hydrobiologia 258:77–88

    Article  Google Scholar 

  • Díaz-Pardo E, Vazquez G, López- López E (1998) The phytoplankton community as a bioindicator of health conditions of Atezca Lake, Mexico. Aquat Ecosyst Health Manag 1:257–266

    Google Scholar 

  • Dixon W, Chiswell B (1996) Review of aquatic monitoring program design. Wat Res 30(9):1935–1948

    Article  CAS  Google Scholar 

  • Edler L (1979) Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and Chlorophyll. National Swedish Environment Protection Board, pp 1–38

  • El-Sheekh MM, Deyab MAI, Desouki SS, Eladl M (2010) Phytoplankton compositions as a response of water quality in El Salam canal, Hadous drain and Damietta branch of River Nile, Egypt. Pak J Bot 42(4):2621–2633

    Google Scholar 

  • Gasiunaite ZR, Cardoso AC, Heiskanen AS, Henriksen P, Kauppila P, Olenina I, Pilkaityte R, Purina R, Razinkovas I, Sagert A, Schubert S, Wasmund N (2005) Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Est Coast Shelf Sci 65(1–2):239–252

    Article  Google Scholar 

  • Habit RN, Pankow H (1976) Algenoflora der Ostsee II. Gustav Fischer Verlag, Jena University Rostock Publication, Germany, Plankton

    Google Scholar 

  • Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Johnson CB (2000) Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc 19(1):50–67

    Article  Google Scholar 

  • Ho SC (1994) Status of limnological research training in Malaysia. In: D Dudgeon, PKS Lam (eds), Inland waters of tropical Asia and Australia: conservation and management, Mitt Int Ver Limnol, vol 24, pp 129–145

  • Ho SC, Peng T (1997) The use of river plankton and fish in the water quality classification of Sungai Perai, Sungai Juru and Sungai Perlis. J Ensearch 10:115–124

    Google Scholar 

  • Hynes HBN (1966) The biology of polluted waters. Liverpool University Press, UK

    Google Scholar 

  • Johnstone C, Day JG, Staines H, Benson EE (2006) The development of a 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolourisation essay for evaluating total antioxidant status in an alga used to monitor environmental impacts in urban aquatic habitats. Ecol Indic 6(2):280–289

    Article  CAS  Google Scholar 

  • Kalff J (2002) Limnology of inland water ecosystems. Printed Hall, New Jersey, USA, Upper Saddle River

    Google Scholar 

  • Kalyoncu H, Çiçek NL, Akköz C, Yorulmaz B (2009) Comparative performance of diatom indices in aquatic pollution assessment. Afr J Agric Res 4(10):1032–1040

    Google Scholar 

  • Kitsiou D, Karydis M (2000) Categorical mapping of marine eutrophication based on ecological indices. Sci Total Environ 255:113–127

    Article  CAS  Google Scholar 

  • Kumari P, Dhadse S, Chaudhari PR, Wate SR (2008) A biomonitoring of plankton to assess quality of water in the lakes of Nagpur City. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th Lake conference, pp 160–164

  • Le C, Zha Y, Li Y, Sun D, Lu H, Yin B (2010) Eutrophication of lake waters in China: cost, causes, and control. Environ Manag 45:662–668

    Article  CAS  Google Scholar 

  • Li Y, Li J, Liang Z, Yin W, Hu L, Shi J, Wang Y (2011) Planktonic algae and epilithic algae in typical rivers of Danjingkou Reservoir. Adv Mat Res 356–360:59–62

    Google Scholar 

  • Lobban CS, Chapman DJ, Kremer BP (1998) An experimental phycology laboratory manual. Cambridge University Press, UK

    Google Scholar 

  • Makhlough A, Wan Maznah WO, Mansor M (2006) Water quality of Mengkuang Dam based on WQI (Water Quality Index) model. In: Proceedings of ICENV (International Conference of Environment), pp 60

  • McCormic PVJ, Cairns JR (1994) Algae as indicators of environmental change. J Appl Phycol 6:50–526

    Google Scholar 

  • Meor Hussain MAF, Ahyaudin A, Amir Shah R, Shah M (2002) The structure and dynamics of net-zooplankton communities of the littoral versus limnetic zone of a typical embayment in a small flow through tropical reservoir. J Biosains 13(2):23–34

    Google Scholar 

  • Molisani MM, de Sousa Barroso H, Becker H, Moreira MOP, Hijo CAG, do Monte TM, Vasconcellos GH (2010) Trophic state, phytoplankton assemblages and limnological diagnosis of the Castanháo Reservoir, CE Brazil. Acta Limnol Bras 22(1):1–12

    Article  Google Scholar 

  • Nather Khan ISA (1991) Effect of urban and industrial wastes on species diversity of the diatom community in a tropical river, Malaysia. Hydrobiologia 224:175–184

    Article  Google Scholar 

  • Noges and Noges (2006) Indicators and criteria to assess ecological status of the large shallow temperate lakes Peipsi (Estonia/Russia) and Vortsjarv (Estonia). Boreal Environ Res 11:67–80

    Google Scholar 

  • Nürnberg GK (1996) Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish, Lake. Reserv Manag 12:432–447

    Google Scholar 

  • Nygaard G (1991) Seasonal periodicity of planktonic desmids in oligotrophic lake Grane Langsø, Denmark. Hydrobiologia 211:195–226

    Article  Google Scholar 

  • O’Farrell I, Lombardo R, Tezanos PP, Loez C (2002) The assessment of water quality in the lower Lujan river (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environ Pollut 120:207–218

    Article  Google Scholar 

  • Offem BO, Ayotunde EO, Ikpi GU, Ada FB, Ochang SN (2011) Plankton-based assessment of the trophic state of three tropical lakes. J Environ Protect 2:304–315

    Article  CAS  Google Scholar 

  • Padro R, Barrado E, Castrillejo Y, Valasco MA, Vaga M (1993) Study of the contents and speciation of heavy metals in river sediments by factor analysis. Anal Lett 26:1719–1739

    Article  Google Scholar 

  • Palmer CM (1980) Algae and water pollution. The identification, significance, and control of Algae in water supplies and in polluted water. Castle House Publication, London

  • Pantle R, Buck H (1955) Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. Gas Wasserfach 96:604

    Google Scholar 

  • Pentecost A (1984) Introduction to Freshwater Algae. Richmond Publishing Co., Ltd., England

    Google Scholar 

  • Phillips G, Pietiläinen OP, Carvalho L, Solimini A, Solheim AL, Cardoso AC (2008) Chlorophyll—nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226

    Article  CAS  Google Scholar 

  • Podani J (1992) Monitoring system. In: Kovacs M (ed) Biological indicators in environmental protection. Ellis Horwood Series in Environmental Management, Science and Technology, UK, pp 12–18

    Google Scholar 

  • Rakocevis-Nedovic J, Hollert H (2005) Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environ Sci Pollut R 12:146–152

    Article  Google Scholar 

  • Robertson DM, Schladow SG, Holdren GC (2008) Long-term changes in the phosphorus loading to and trophic state of the Salton, Sea, California. Hydrobiologia 604:21–36

    Article  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The Diatoms Biology and Morphology of the Genera. Cambridge University Press, Cambridge, p 747

    Google Scholar 

  • Rushforth SR, Brock JT (1991) Attached diatom communities from the lower Truckee River, summer and fall, 1986. Hydrobiologia 224:49–64

    Article  CAS  Google Scholar 

  • Salleh A (1996) Alga Air Tawar. Dewan Bahasa dan Pustaka Kuala Lumpur, Ampang/Hulu Kelang, Selangor Darul Ehsan

    Google Scholar 

  • Salm CR, Saros JE, Martin CS, Erickson JM (2009) Patterns of seasonal phytoplankton distribution in prairie saline lakes on the northern great plains (USA). Saline Syst 5:1–13

    Article  Google Scholar 

  • Salusso MM, Morana LB (2002) Comparison of indices in the monitoring of two lotic systems in the northwest Argentina. Rev Biol Trop 50:327–336

    Google Scholar 

  • Schletterer M, Schönhuber M, Fureder L (2011) Biodiversity of diatoms and macroinvertebrates in an east European lowland river, the Tudovka River (Tver Region, Russia). Boreal Environ Res 16:79–90

    Google Scholar 

  • Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana, p 117

    Google Scholar 

  • Shanthala M, Hosmani S, Hosetti B (2009) Diversity of phytoplankton in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environ Monit Assess 151:437–443

    Article  CAS  Google Scholar 

  • Sheela AM, Letha J, Joseph S, Ramachandran KK, Sanalkumar SP (2011) Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environ Monit Assess 177(1–4):575–592

    Article  CAS  Google Scholar 

  • Sigua GC, Williams MJ, Coleman SW, Starks R (2006) Nitrogen and Phosphorus Status of Soils and Trophic State of Lakes Associated with Forage-Based Beef Cattle Operations in Florida. J Environ Qual 35:240–252

    Article  CAS  Google Scholar 

  • Sorokin Y (1999) Aquatic microbial ecology, a textbook for students in the environmental sciences. Backhuys Publishers, Leiden

    Google Scholar 

  • Stevenson RJ (1984) Epilithic and epipelic diatoms in the Sandusky River with emphasis on species diversity and water pollution. Hydrobiologia 114:161–175

    Article  Google Scholar 

  • Stevenson RJ, Smol JP (2003) Use of algae in environmental assessments. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America, ecology and classification. Academic Press, USA, pp 775–804

    Chapter  Google Scholar 

  • Stewart PM (1995) Use of algae in aquatic pollution assessment. Nat Area J 15(3):234–239

    Google Scholar 

  • Stobutzki IC, Silvestre GT, Abu Talib A, Krongprom A, Supongpan M, Khemakorn P, Armada N, Garces L (2006) Decline of demersal coastal fisheries resources in three developing Asian countries. Fish Res 78(2–3):130–142

    Article  Google Scholar 

  • Swaminathan MS (2003) Biodiversity: an effective safety net against environmental pollution. Environ Pollut 126:287–291

    Article  CAS  Google Scholar 

  • Tan S, Anton A (1992) The ecology of dinoflagellate blooms in a tropical reservoir. In: Hussein MY, Sajap AS, Japar SB (eds) Status ecologi semasa menjelang 2020. Universiti Kebangsaan Malaysia, Persidangan Ecology Malaysia, pp 169–172

    Google Scholar 

  • Tian C, Pei H, Hu W, Xie J (2011) Assessment of trophic status for Dongping Lake using comprehensive trophic state index and diversity indices. Bioinformatics and biomedical engineering, (iCBBE) 2011 5th international conference on, pp 1–4

  • Tracanna BC, Martínez de Marco SN, Amoroso MJ, Romero N, Chaile P, Mangeaud A (2006) Physical, chemical and biological variability in the Dr. C. Gelsi reservoir (NW Argentine): a temporal and spatial approach. Limnetica 25(3):787–808

    Google Scholar 

  • Unuoha PC, Nwankwo DI, Chukwu LO, Wim V (2011) Spatio-temporal variations in phytoplankton biomass and diversity in a tropical eutrophic lagoon, Nigeria. J Am Sci 7(8):33–46

    Google Scholar 

  • Vollenwieder RA (1998) The scientific basis of lake and stream eutrophication with particular reference to phosphorus and nitrogen as eutrophication factors. OECD Tech Rep 27:1–182

    Google Scholar 

  • Wan Maznah WO, Mansor M (2002) Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin Malaysia. Hydrobiologia 487:229–241

    Article  CAS  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic Press, New York, p 918

    Google Scholar 

  • Wetzel RG (1983) Limnology. WB Saunders Co, Philadelphia

    Google Scholar 

  • Wetzel RG (1995) Limnological Analyses, 2nd edn. Spring, New York

    Google Scholar 

  • Wilhm JL (1970) Range of diversity index in benthic macro-invertebrate populations. Water Poll Control Fed 42:221–224

    Google Scholar 

  • Wilhm JL, Dorris TC (1968) Biological parameters for water quality criteria. Bioscience 18:477–481

    Article  Google Scholar 

  • Wu JT (1984) Phytoplankton as bioindicator for water quality in Taipei. Bot Bull Acad Sinica 25:205–214

    Google Scholar 

  • Wu RSS, Siu WHL, Shin PKS (2005) Induction, adaptation and recovery of biological responses: implications for environmental monitoring. Mar Pollut Bull 51:623–634

    Article  CAS  Google Scholar 

  • Yap SY (1997) Classification of a Malaysian river using biological indices: a preliminary attempt. Environmentalist 17(2):79–86

    Article  Google Scholar 

  • Yeng CK (2006) A study on limnology and phytoplankton biodiversity of Ahning Reservoir. Dissertation, University Sains Malaysia, Kedah

    Google Scholar 

  • Zar JH (1974) Biostatistical analysis, 1st edn. Prentice-Hall Inc, New York, p 620

    Google Scholar 

  • Zbikowski R, Szefer P, Latala A (2007) Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the Southern Baltic. Sci Total Environ 387:320–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staffs and students of School of Biological Sciences, Universiti Sains Malaysia (USM), for their help in the field and laboratory analysis. Thanks are also due to Penang Water Resource Authority (Perbadanan Bekalan Air (PBA), Pulau Pinang) for their logistic support and for giving us basic information on Mengkuang Reservoir. This research was funded by the Universiti Sains Malaysia (USM) Short-term Research Grant (Grant No. 304/PBIOLOGI/637062). Asieh Makhlough was supported by Ecological Academy of Caspian Sea, Iran, during her graduate studies in USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. O. Wan Maznah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan Maznah, W.O., Makhlough, A. Water quality of tropical reservoir based on spatio-temporal variation in phytoplankton composition and physico-chemical analysis. Int. J. Environ. Sci. Technol. 12, 2221–2232 (2015). https://doi.org/10.1007/s13762-014-0610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0610-3

Keywords

Navigation