Skip to main content

Advertisement

Log in

Association between genetically proxied lipid-lowering drug targets, lipid traits, and amyotrophic lateral sclerosis: a mendelian randomization study

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Background

The use of circulating lipid traits as biomarkers to predict the risk of amyotrophic lateral sclerosis (ALS) is currently controversial, and the evidence-based medical evidence for the use of lipid-lowering agents, especially statins, on ALS risk remains insufficient. Our aim was to apply a Mendelian randomization (MR) approach to assess the causal impact of lipid-lowering agents and circulating lipid traits on ALS risk.

Materials and methods

Our study included primary and secondary analyses, in which the risk associations of lipid-lowering gene inhibitors, lipid traits, and ALS were assessed by the inverse variance weighting method as the primary approach. The robustness of the results was assessed using LDSC assessment, conventional MR sensitivity analysis, and used Mediating MR to explore potential mechanisms of occurrence. In the secondary analysis, the association of lipid-lowering genes with ALS was validated using the Summary data-based Mendelian Randomization (SMR) method.

Results

Our results showed strong evidence between genetic proxies for Apolipoprotein B (ApoB) inhibitor (OR = 0.76, 95% CI = 0.68 − 0.86; P = 5.58 × 10−6) and reduced risk of ALS. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor (OR = 1.06, 95% CI = 0. 85–1.33) was not found to increase ALS risk. SMR results suggested that ApoB expression was associated with increased ALS risk, and colocalization analysis did not support a significant common genetic variation between ApoB and ALS. Mediator MR analysis suggested a possible mediating role for interleukin-6 and low-density lipoprotein cholesterol (LDL-C). While elevated LDL-C was significantly associated with increased risk of ALS among lipid traits, total cholesterol (TC) and ApoB were weakly associated with ALS. LDSC results suggested a potential genetic correlation between these lipid traits and ALS.

Conclusions

Using ApoB inhibitor can lower the risk of ALS, statins do not trigger ALS, and LDL-C, TC, and ApoB levels can predict the risk of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Circulating lipid traits are available at http://csg.sph.umich.edu/willer/public/lipids2013/ (Used to obtain HDL-C, LDL-C, TC and TG). https://www.ebi.ac.uk/gwas/publications/27005778 (Used to obtain ApoB and ApoA1). Aggregated data for ALS and IL-6 are available from the GWAS Catalog: https://www.ebi.ac.uk/gwas/publications/29566793; https://www.ebi.ac.uk/gwas/publications/27989323. CAD: http://www.cardiogramplusc4d.org/data-downloads/. eQTL data for lipid-lowering drug targets gene were obtained from the GTEx V8 (https://gtexportal.org/) and eQTLGen (https://www.eqtlgen.org/) Consortium.

Abbreviations

MR:

Mendelian Randomization

SMR:

Summary data-based Mendelian Randomization

HMGCR:

3-Hydroxy-3-methylglutaryl-coenzyme A reductase

NPC1L1:

Niemann–Pick C1-Like 1

PCSK9:

Proprotein convertase subtilisin/kexin type 9

CETP:

Cholesteryl Ester Transfer Protein

LDL-C:

Low-density lipoprotein cholesterol

HDL-C:

High-density lipoprotein cholesterol

TC:

Total cholesterol

TG:

Triglycerides

ApoB:

Apolipoprotein B

ApoA1:

Apolipoprotein A1

ALS:

Amyotrophic lateral sclerosis

CAD:

Coronary artery disease

IL-6:

Interleukin-6

IV:

Instrumental variable

OR:

Odds ratio

CI:

Confidence interval

IVW:

Inverse variance weighting method

GLGC:

Global Lipid Genetics Consortium

GWAS:

Genome-wide association study

NCBI:

National Center for Biotechnology Information

CARDIoGRAM:

Coronary ARtery DIsease Genome wide Replication and Meta-analysis

LD:

Linkage disequilibrium

References

  1. Marcus R (2022) What is amyotrophic lateral sclerosis? JAMA 328(24):2466. https://doi.org/10.1001/jama.2022.19305

    Article  PubMed  Google Scholar 

  2. Oskarsson B, Gendron TF, Staff NP (2018) Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc 93(11):1617–1628. https://doi.org/10.1016/j.mayocp.2018.04.007

    Article  PubMed  Google Scholar 

  3. Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52(4):448–457. https://doi.org/10.1002/ana.10312

    Article  CAS  PubMed  Google Scholar 

  4. Diekstra FP, Saris CG, van Rheenen W, Franke L, Jansen RC, van Es MA et al (2012) Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS. PLoS ONE 7(4):e35333. https://doi.org/10.1371/journal.pone.0035333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Golomb BA, Kwon EK, Koperski S, Evans MA (2009) Amyotrophic lateral sclerosis-like conditions in possible association with cholesterol-lowering drugs: an analysis of patient reports to the University of California, San Diego (UCSD) Statin Effects Study. Drug Saf 32(8):649–661. https://doi.org/10.2165/00002018-200932080-00004

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Luo X, Chen X, Shang H (2020) Lipid profile in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis. Front Neurol 11:567753. https://doi.org/10.3389/fneur.2020.567753

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chio A, Calvo A, Ilardi A, Cavallo E, Moglia C, Mutani R et al (2009) Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73(20):1681–1685. https://doi.org/10.1212/WNL.0b013e3181c1df1e

    Article  CAS  PubMed  Google Scholar 

  8. Kioumourtzoglou MA, Seals RM, Gredal O, Mittleman MA, Hansen J, Weisskopf MG (2016) Cardiovascular disease and diagnosis of amyotrophic lateral sclerosis: a population based study. Amyotroph Lateral Scler Frontotemporal Degener 17(7–8):548–554. https://doi.org/10.1080/21678421.2016.1208247

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weisskopf MG, Levy J, Dickerson AS, Paganoni S, Leventer-Roberts M (2022) Statin medications and amyotrophic lateral sclerosis incidence and mortality. Am J Epidemiol 191(7):1248–1257. https://doi.org/10.1093/aje/kwac054

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thompson PD, Panza G, Zaleski A, Taylor B (2016) Statin-associated side effects. J Am Coll Cardiol 67(20):2395–2410. https://doi.org/10.1016/j.jacc.2016.02.071

    Article  CAS  PubMed  Google Scholar 

  11. Golomb BA, Verden A, Messner AK, Koslik HJ, Hoffman KB (2018) Amyotrophic lateral sclerosis associated with statin use: a disproportionality analysis of the fda’s adverse event reporting system. Drug Saf 41(4):403–413. https://doi.org/10.1007/s40264-017-0620-4

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman KB, Kraus C, Dimbil M, Golomb BA (2012) A survey of the FDA’s AERS database regarding muscle and tendon adverse events linked to the statin drug class. PLoS ONE 7(8):e42866. https://doi.org/10.1371/journal.pone.0042866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt AF, Finan C, Gordillo-Maranon M, Asselbergs FW, Freitag DF, Patel RS et al (2020) Genetic drug target validation using Mendelian randomisation. Nat Commun 11(1):3255. https://doi.org/10.1038/s41467-020-16969-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. https://doi.org/10.1038/ng.2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kettunen J, Demirkan A, Wurtz P, Draisma HH, Haller T, Rawal R et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122. https://doi.org/10.1038/ncomms11122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R et al (2018) Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97(6):1268–83. https://doi.org/10.1016/j.neuron.2018.02.027

    Article  CAS  PubMed Central  Google Scholar 

  17. Brooks BR (1994) El escorial world federation of neurology criteria for the diagnosis of amyotrophic lateral sclerosis. subcommittee on motor neuron diseases/amyotrophic lateral sclerosis of the world federation of neurology research group on neuromuscular diseases and the EL escorial “clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124:96–107. https://doi.org/10.1016/0022-510x(94)90191-0

    Article  PubMed  Google Scholar 

  18. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47(10):1121–1130. https://doi.org/10.1038/ng.3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  20. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA et al (2015) A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10(4):e0120758. https://doi.org/10.1371/journal.pone.0120758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu S, Wang P, Fung WK, Liu Z (2022) A novel penalized inverse-variance weighted estimator for Mendelian randomization with applications to COVID-19 outcomes. Biometrics. https://doi.org/10.1111/biom.13732

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48(5):481–487. https://doi.org/10.1038/ng.3538

    Article  CAS  PubMed  Google Scholar 

  23. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–5. https://doi.org/10.1038/ng.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chauquet S, Zhu Z, O’Donovan MC, Walters JTR, Wray NR, Shah S (2021) Association of antihypertensive drug target genes with psychiatric disorders: a mendelian randomization study. JAMA Psychiat 78(6):623–631. https://doi.org/10.1001/jamapsychiatry.2021.0005

    Article  Google Scholar 

  26. Wallace C (2013) Statistical testing of shared genetic control for potentially related traits. Genet Epidemiol 37(8):802–813. https://doi.org/10.1002/gepi.21765

    Article  PubMed  PubMed Central  Google Scholar 

  27. Plagnol V, Smyth DJ, Todd JA, Clayton DG (2009) Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics 10(2):327–334. https://doi.org/10.1093/biostatistics/kxn039

    Article  PubMed  Google Scholar 

  28. Lu CH, Allen K, Oei F, Leoni E, Kuhle J, Tree T et al (2016) Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 3(4):e244. https://doi.org/10.1212/NXI.0000000000000244

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ahola-Olli AV, Wurtz P, Havulinna AS, Aalto K, Pitkanen N, Lehtimaki T et al (2017) Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet 100(1):40–50. https://doi.org/10.1016/j.ajhg.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  30. Woolf WB, Zagkos L, Gill D (2022) TwoStepCisMR: a novel method and r package for attenuating bias in cis-mendelian randomization analyses. Genes (Basel). https://doi.org/10.3390/genes13091541

    Article  PubMed  Google Scholar 

  31. Sanderson E. Multivariable Mendelian Randomization and Mediation (2021) Cold Spring Harb Perspect Med 11(2). doi: https://doi.org/10.1101/cshperspect.a038984.

  32. Elliott DA, Weickert CS, Garner B (2010) Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol 51(4):555–573. https://doi.org/10.2217/CLP.10.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75(5):822–831. https://doi.org/10.1086/425287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingre C, Chen L, Zhan Y, Termorshuizen J, Yin L, Fang F (2020) Lipids, apolipoproteins, and prognosis of amyotrophic lateral sclerosis. Neurology 94(17):e1835–e1844. https://doi.org/10.1212/WNL.0000000000009322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim SM, Noh MY, Kim H, Cheon SY, Lee KM, Lee J et al (2017) 25-Hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis. Oncotarget 8(7):11855–11867. https://doi.org/10.18632/oncotarget.14416

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schaper F, Rose-John S (2015) Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 26(5):475–487. https://doi.org/10.1016/j.cytogfr.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  37. Campbell IL, Erta M, Lim SL, Frausto R, May U, Rose-John S et al (2014) Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 34(7):2503–2513. https://doi.org/10.1523/JNEUROSCI.2830-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pronto-Laborinho A, Pinto S, Gromicho M, Pereira M, Swash M, de Carvalho M (2019) Interleukin-6 and amyotrophic lateral sclerosis. J Neurol Sci 398:50–53. https://doi.org/10.1016/j.jns.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  39. Garbuzova-Davis S, Ehrhart J, Sanberg PR, Borlongan CV (2018) Potential role of humoral IL-6 cytokine in mediating pro-inflammatory endothelial cell response in amyotrophic lateral sclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms19020423

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saeedi Saravi SS, Saeedi Saravi SS, Arefidoust A, Dehpour AR (2017) The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis 32(4):949–965. https://doi.org/10.1007/s11011-017-0021-5

    Article  CAS  PubMed  Google Scholar 

  41. Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, Lohoff FW (2022) Mendelian randomization study of pcsk9 and hmg-coa reductase inhibition and cognitive function. J Am Coll Cardiol 80(7):653–662. https://doi.org/10.1016/j.jacc.2022.05.041

    Article  CAS  PubMed  Google Scholar 

  42. Nabizadeh F, Balabandian M, Sharafi AM, Ghaderi A, Rostami MR, Naser Moghadasi A (2022) Statins and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Acta Neurol Belg 122(4):979–986. https://doi.org/10.1007/s13760-021-01753-8

    Article  PubMed  Google Scholar 

  43. Zheng Z, Sheng L, Shang H (2013) Statins and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener 14(4):241–245. https://doi.org/10.3109/21678421.2012.732078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants and researchers who contributed and collected data.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81860826).

Author information

Authors and Affiliations

Authors

Contributions

YZQ is the principal manuscript writer, designed the study, and wrote the manuscript. XYF and LKK contributed to the data analysis and data interpretation. LLJ contributed to the revision of the manuscript. All the authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Liangji Liu.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Xu, Y., Li, K. et al. Association between genetically proxied lipid-lowering drug targets, lipid traits, and amyotrophic lateral sclerosis: a mendelian randomization study. Acta Neurol Belg 124, 485–494 (2024). https://doi.org/10.1007/s13760-023-02393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-023-02393-w

Keywords

Navigation