Skip to main content
Log in

Diagnostic muscle biopsies in the era of genetics: the added value of myopathology in a selection of limb-girdle muscular dystrophy patients

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

In the second most common dystrophy associated with predominant pelvic and shoulder girdle muscle weakness termed Limb-Girdle Muscular Dystrophy (LGMD), genetic complexity, large phenotypic variability, and clinical overlap can result in extensive diagnostic delays in certain individuals. In view of the large strides genetics has taken in this day and age, we address the question if muscle biopsies can still provide diagnostic evidence of substance for these patients. We reviewed and reanalyzed muscle biopsy characteristics in a cohort of LGMD patient pairs in which gene variants were picked up in CAPN3, FKRP, TTN, and ANO5, using histochemical–immunohistochemical—and immunofluorescent staining, and western blotting. We found that not the nature and severity of inflammatory changes, but the changed properties of the dystrophin complex were the most valuable assets to differentiate LGMD from myositis. Proteomic evaluation brought both primary and secondary deficiencies to light, which could be equally revealing for diagnosis. Though a muscle biopsy might, at present, not always be strictly necessary anymore, it still represents an irrefutable asset when the genetic diagnosis is complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets generated in the context of this study are available from the corresponding author upon simple request.

References

  1. Murphy AP, Straub V (2015) The classification, natural history and treatment of the limb-girdle muscular dystrophies. J Neuromuscul Disord 2:S7–S19. https://doi.org/10.3233/JND-150105

    Article  Google Scholar 

  2. Straub V, Murphy A, Udd B, LGMD workshop study group (2018) 229th ENMC international workshop: Limb girdle muscular dystrophies—Nomenclature and reformed classification. Naarden, the Netherlands, 17–19 March 2017. Neuromuscul Disord 28:702–710. https://doi.org/10.1016/j.nmd.2018.05.007

    Article  PubMed  Google Scholar 

  3. Walter MC, Petersen JA, Stucka R, Fischer D, Schroeder R, Vorgerd M, Schroers A, Schreiber H, Hanemann CO, Knirsch U, Rosenbohm A, Huebner A, Barisic N, Horvath R, Komoly S, Reilich P, Mueller-Felber W, Pongratz D, Mueller JS, Auerswald EA, Lochmueller H (2005) FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Genet 41:e50. https://doi.org/10.1136/jmg.2003.013953

    Article  Google Scholar 

  4. Schwartz M, Hertz JM, Sveen ML, Vissing J (2005) LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype. Neurology 64:1635–1637. https://doi.org/10.1212/01.WNL.0000157654.59374.E5

    Article  PubMed  CAS  Google Scholar 

  5. Mudau MM, Essop F, Krause A (2017) A novel FKRP-related muscular dystrophy founder mutation in South-African Afrikaner patients with a phenotype suggestive of a dystrophinopathy. S Afr Med J 107:80–82. https://doi.org/10.7196/SAMJ.2017.v107i1.10907

    Article  CAS  Google Scholar 

  6. Savarese M, Maggi L, Vihola A, Jonson PH, Tasca G, Ruggiero L, Bello L, Magri F, Giuliano T, Torella A, Evila A, Di Fruscio G, Vanakker O, Gibertini S, Vercelli L, Ruggieri A, Antozzi C, Luque H, Janssens S, Pasanisi MB, Fiorillo C, Raimondi M, Ergoli M, Politano L, Bruno C, Rubegni A, Pane M, Santorelli FM, Minetti C, Angelini C, De Bleecker J, Moggio M, Mongini T, Comi GP, Santoro L, Mercuri E, pegoraro E, Mora M, Hackman P, Udd B, Nigro V, (2018) Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol 75:557–565. https://doi.org/10.1001/jamaneurol.2017.4899

    Article  PubMed  PubMed Central  Google Scholar 

  7. Savarese M, Di Fruscio G, Tasca G, Ruggiero L, Janssens S, De Bleecker J, Delpech M, Musumeci O, Toscano A, Angelini C, Sacconi S, Santoro L, Ricci E, Claes K, Politano L, Nigro V (2015) Next generation sequencing on patients with LGMD and nonspecific myopathies: findings associated with ANO5 mutations. Neuromuscul Disord 25:533–541. https://doi.org/10.1016/j.nmd.2015.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cai C, Anthony DC, Pytel P (2019) A pattern-based approach to the interpretation of skeletal muscle biopsies. Modern Pathol 32:462–483. https://doi.org/10.1038/s41379-018-0164-x

    Article  Google Scholar 

  9. Vihola A, Luque H, Savarese M, Penttila S, Lindfors M, Leturcq F, Eymard B, Tasca G, Brais B, Conte T, Charton K, Richard I, Udd B (2018) Diagnostic anoctamin-5 protein defect in patients with ANO5-mutated muscular dystrophy. Neuropathol Appl Neurobiol 44:441–448. https://doi.org/10.1111/nan.12410

    Article  PubMed  CAS  Google Scholar 

  10. Jarmula A, Lusakowska A, Fichna JP, Topolewska M, Macias A, Johnson K, Topf A, Straub V, Rosiak E, Szczepaniak K, Dunin-Horkawics S, Maruszak A, Kaminska AM, Redowicz MJ (2019) ANO5 mutations in the Polish limb-girdle muscular dystrophy patients: Effects on protein structure. Sci Rep 9:11533. https://doi.org/10.1038/s41598-019-47849-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Duguez S, Bartoli M, Richard I (2006) Calpain 3: a key regulator of the sarcomere? FEBS J 273:3427–3436. https://doi.org/10.1111/j.1742-4658.2006.05351.x

    Article  PubMed  CAS  Google Scholar 

  12. Haravuori H, Vihola A, Straub V, Auranen M, Richard I, Marchand S, Voit T, Labeit S, Somer H, Peltonen L, Bekcmann JS, Udd B (2001) Secondary calpain3 deficiency in 2q-linked muscular dystrophy Titinis the candidate gene. Neurology 56:869–877. https://doi.org/10.1212/wnl.56.7.869

    Article  PubMed  CAS  Google Scholar 

  13. Charlton R, Henderson M, Richards J, Hudson J, Straub V, Bushby K, Barresi R (2009) Immunohistochemical analysis of calpain 3: advantages and limitations in diagnosing LGMD2A. Neuromuscul Disord 19:449–457. https://doi.org/10.1016/j.nmd.2009.05.005

    Article  PubMed  Google Scholar 

  14. Sarparanta J, Blandin G, Charton K, Vihola A, Marchand S, Milic A, Hackman P, Ehler E, Richard I, Udd B (2010) Interactions with M-band titin and calpain 3 link myospryn (CMYA5) to tibial and limb-girdle muscular dystrophies. J Biol Chem 39:30304–30314. https://doi.org/10.1074/jbc.M110.108720

    Article  Google Scholar 

  15. Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K (1995) Muscle-specific calpain, p94, responsible for limb-girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162. https://doi.org/10.1074/jbc.270.52.31158

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto LU, Velloso FJ, Lima BL, Fogaca LLQ, de Paula F, Vieira NM, Zatz M, Vainzof M (2008) Muscle protein alterations inLGMD2I patients with different mutations in the fukutin-related protein gene. J Histochem Cytochem 56:995–1001. https://doi.org/10.1369/jhc.2008.951772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huang Y, de Morree A, van Remoortere A, Bushby K, Frants RR, Tden Dunnen J, van der Maarel SM (2008) Calpain 3 is a modculator of the dysferlin protein complex in skeletal muscle. Hum Molec Genet 17:1855–1866. https://doi.org/10.1093/hmg/ddn081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Barresi R (2011) From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skeletal Muscle 1:24. https://doi.org/10.1186/2044-5040-1-24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. MacLeod H, Pytel P, Wollmann R, Chelmicka-Schorr E, Silver K, Brown Anderson R, Waggoner D, McNally EM (2007) A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscul Disord 17:285–289. https://doi.org/10.1016/j.nmd.2007.01.005

    Article  PubMed  Google Scholar 

  20. Okazaki T, Matsuura K, Kasagi N, Kai M, Okubo M, Nishino I, Nanba E, Maegaki Y (2020) Duchenne muscular dystrophy-like phenotype in an LGMD2I patient with novel FKRP gene variants. Hum Gen Var 7:e12. https://doi.org/10.1038/s41439-020-0099-x

    Article  CAS  Google Scholar 

  21. Alhamidi M, Brox V, Stensland E, Liset M, Lindal S, Nilssen O (2017) Limb girdle muscular dystrophy type 2I: No correlation between clinical severity, histopathology and glycosylated α-dystroglycan levels in patients homozygous for common FKRP mutation. Neuromuscul Disord 27:619–626. https://doi.org/10.1016/j.nmd.2017.02.015

    Article  PubMed  Google Scholar 

  22. Vainzof M, Anderson LVB, McNally EM, Davis DB, Faulkner G, Valle G, Moreira ES, Pavanello RCM, Passos-Bueno MR, Zatz M (2001) Dysferlin protein analysis in limb-girdle muscular dystrophies. J Molec Neurosci 17:71–80. https://doi.org/10.1385/JMN:17:1:71

    Article  PubMed  CAS  Google Scholar 

  23. Jones HF, Bryen SJ, Waddell LB, Bournazos A, Davis M, Farra MA, McLean CA, Mowat DR, Sampaio H, Woodcock IR, Ryan MM, Jones KJ, Cooper ST (2019) Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants. Neuromuscul Disord 29:913–919. https://doi.org/10.1016/j.nmd.2019.09.013

    Article  PubMed  Google Scholar 

  24. Duggan DJ, Fanin M, Pegoraro E, Angelini C, Hoffman EP (1996) α-Sarcoglycan (adhalin) deficiency: complete deficiency patients are 5% of childhood-onset dystrophin-normal muscular dystrophy and most partical deficiency patients do not have gene mutations. J Neurol Sci 140:30–39. https://doi.org/10.1016/0022-510X(96)00028-7

    Article  PubMed  CAS  Google Scholar 

  25. Lanzillo R, Aurino S, Fanin M, Aguennoz M, Vitale F, Fiorillo C, Del Giudice E, Nigro V, Santoro L (2006) Early onset calpainopathy with normal non-functional calpain 3 level. Dev Med Child Neurol 48:304–306. https://doi.org/10.1017/S001216220600065X

    Article  PubMed  CAS  Google Scholar 

  26. Gallardo E, Rojas-Garcia R, de Luna N, Puu A, Brown RH, Illa I (2001) Inflammation in dysferlin myopathy: Immunohistochemical characterization of 13 patients. Neurology 57:2136–2138. https://doi.org/10.1212/wnl.57.11.2136

    Article  PubMed  CAS  Google Scholar 

  27. Preusse C, Goebel HH, Held J, Wengert O, Scheibe F, Irlbacher K, Koch A, Heppner FL, Stenzel W (2012) Immune-mediated necrotizing myopathy is characterized by a specific Th1-M1 polarized immune profile. Am J Pathol 181:2161–2171. https://doi.org/10.1016/j.ajpath.2012.08.033

    Article  PubMed  CAS  Google Scholar 

  28. Allenbach Y, Leroux G, Suárez-Calvet X, Preusse C, Gallardo E, Hervier B, Rigolet A, Hie M, Pehl D, Limal N, Hufnagl P, Zerbe N, Meyer A, Aouizerate J, Uzunhan Y, Maisonobe T, Goebel HH, Benveniste O, Stenzel W (2016) Dermatomyositis with or without anti-melanoma differentiation-associated gene 5 antibodies: common interferon signature but distinct NOS2 expression. Am J Pathol 186:691–700. https://doi.org/10.1016/j.ajpath.2015.11.010

    Article  PubMed  CAS  Google Scholar 

  29. Darin N, Kroksmark AK, Ahlander AC, Moslemi AR, Oldfors A, Tulinius M (2007) Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2I. Eur J Ped Neurol 11:353–357. https://doi.org/10.1016/j.ejpn.2007.02.018

    Article  CAS  Google Scholar 

  30. Tang J, Song X, Ji G, Wu H, Sun S, Lu S, Li Y, Zhang C, Zhang H (2018) A novel mutation in the DYSF gene in a patient with a presumed inflammatory myopathy. Neuropathol 38:433–437. https://doi.org/10.1111/neup.12474

    Article  CAS  Google Scholar 

  31. Jethwa H, Jacques TS, Gunny R, Wedderburn LR, Pilkington C, Manzur AY (2013) Limb girdle muscular dystrophy type 2B masquerading as inflammatory myopathy: case report. Ped Rheumatol 11:e19. https://doi.org/10.1186/1546-0096-11-19

    Article  Google Scholar 

  32. Carvalho Pimentel LH, Maia Alcantara RN, de Araujo Fontenele SM, de Catsro Costa CM, de Assis Aquino Gondim F (2008) Limb-girdle muscular dystrophy type 2B mimicking polymyositis. Arq Neuropsiquiatr 66:80–82. https://doi.org/10.1590/S0004-282X2008000100019

    Article  Google Scholar 

  33. Xu C, Chen J, Zhang Y, Li J (2018) Limb-girdle muscular dystrophy type 2B misdiagnosed as polymyositis at the early stage. Case report and literature review. Clin Case Rep 97:e21. https://doi.org/10.1097/MD.0000000000010539

    Article  Google Scholar 

  34. Vinit J, Samson M Jr, Gaultier JB, Laquerriere A, Ollagnon E, Petiot P, Marie I, Levesque H, Rousset H (2010) Dysferlin deficiency treated like refractory polymyositis. Clin Rheumatol 29:103–106. https://doi.org/10.1007/s10067-009-1273-1

    Article  PubMed  Google Scholar 

  35. Schara U, Gencik M, Mortier J, Langen M, Gencikova A, Epplen JT, Mortier W (2001) Alpha-sarcoglycanopathy perviously misdiagnosed as Duchenne muscular dystrophy: implications for current diagnostics and patient care. Eur J Pediatr 160:452–453. https://doi.org/10.1007/s004310100744

    Article  PubMed  CAS  Google Scholar 

  36. McMillan HJ, Michaud J (2013) Inflammatory changes in limb-girdle muscular dystrophy type 2I. Can J Neurol Sci 40:875–877. https://doi.org/10.1017/S0317167100016061

    Article  PubMed  CAS  Google Scholar 

  37. Dabby R, Sadeh M, Hilton-Jones D, Plotz P, Hackman P, Vihola A, Udd B, Leshinsky-Silver E (2015) Adult onset limb-girdle muscular dystrophy—a recessive titinopathy masquerading as myositis. J Neurol Sci 351:120–123. https://doi.org/10.1016/j.jns.2015.03.001

    Article  PubMed  Google Scholar 

  38. Schneider I, Stoltenburg G, Descauer M, Winterholler M, Hanisch F (2014) Limb girdle muscular dystrophy type 2L presenting as necrotizing myopathy. Acta Myologica 33:19–21

    PubMed  PubMed Central  Google Scholar 

  39. Panades-de-Oliveira L, Bermejo-Guerrero L, de Fuenmayor-Fernandez de la Hoz CB, Cantero Montenegro D, Hernandez Lain A, Marti P, Muelas N, Vilchez JJ, Dominguez-Gonzalez C (2020) Persistent asymtomatic or mild symptomatic hyperCKemia due to mutations in ANO5: the mildest end of the anoctaminopathies spectrum. J Neurol. https://doi.org/10.1007/s00415-020-09872-7

    Article  PubMed  Google Scholar 

  40. Nguyen K, Bassez G, Krahn M, Bernard R, Laforêt P, Labelle V, Urtizberea JA, Figarella-Branger D, Romero N, Attarian S, Leturcq F, Pouget J, Lévy N, Eymard B (2007) Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch Neurol 64:1176–1182. https://doi.org/10.1001/archneur.64.8.1176

    Article  PubMed  Google Scholar 

  41. D’Arcy CE, Ryan MM, McLean CA (2009) Juvenile polymyositis or paediatric muscular dystrophy: a detailed re-analysis of 13 cases. Histopathology 55:452–462. https://doi.org/10.1097/01268031-200941001-00195

    Article  PubMed  Google Scholar 

  42. Spuler S, Carl M, Zabojszcra J, Straub V, Bushby K, Moore SA, Baehring S, Wenzel K, Vinkemeier U, Rocken C (2008) Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol 63:323–328. https://doi.org/10.1002/ana.21309

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Ankala A, Al Khallaf H, Wang X, Martchenko M, Dong B, Husami A, Zhang K, Valencia A (2017) The applications and challenges of next-generation sequencing in diagnosing neuromuscular disorders, next generation sequencing based clinical molecular diagnosis of human genetic disorders. In: Wong LJ (ed) next generation sequencing based clinical molecular diagnosis of human genetic disorders. Springer, Cham, pp 177–200. https://doi.org/10.1007/978-3-319-56418-0_10

    Chapter  Google Scholar 

  44. Ozyilmaz B, Kirbiyik O, Ozdemir TR, Ozer OK, Kutbay YB, Erdogan KM, Guvenc MS, Kale MY, Gazeteci H, Kilic B, Sertpoyraz F, Diniz G, Baydan F, Gencpinar P, Dunbar NO, Yis U (2019) Impact of next-generation sequencing panels in the evaluation of limb-girdle muscular dystrophies. Hum Genet 83:331–347. https://doi.org/10.1111/ahg.12319

    Article  CAS  Google Scholar 

  45. Liang WC, Jong YJ, Wang CH, Wang CH, Tian X, Chen WZ, Kan TM, Minami N, Nishino I, Wong LJC (2020) Clinical, pathological, imaging and genetic characterization in a Taiwanese cohort with limb-girdle muscular dystrophy. Orphanet Rare Dis 15:160. https://doi.org/10.1186/s13023-020-01445-1

    Article  Google Scholar 

  46. Hackman P, Udd B, Bonnemann CG, Ferreiro A, Titinopathy database consortium (2017) 219th ENMC international workshop titinopathies international database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April–1 May 2016. Neuromuscul Disord 27:396–407. https://doi.org/10.1016/j.nmd.2017.01.009

    Article  PubMed  Google Scholar 

  47. Peddareddygari LR, Oberoi K, Grewal RP (2018) Limb girdle muscular dystrophy due to digenic inheritance of DES and CAPN3 mutations. Case Rep Neurol 10:272–278. https://doi.org/10.1159/000492664

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Bleecker JL (2005) How to approach the patient with muscular symptoms in the general neurological practice? Acta Neurol Belg 105:18–22

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Marco Savarese from the Folkshalsan Institute of Genetics, University of Helsinki, Finland, and Bjarne Udd from the Neuromuscular Research Center, Tampere University, Finland for their help with interpreting TTN variants. Jan De Bleecker is a member of the European Reference Network (ERN) for rare neuromuscular disorders Euro-NMD.

Funding

This study was funded by the International Federation of Medical Students’ Associations (IFMSA) SCORE research exchange program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boel De Paepe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study of human participants were in accordance with the ethical standards of the institutional research committee, approved by the Ghent University Hospital Ethics Committee under reference B670201836756, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Paepe, B., Velghe, E., Salminen, L. et al. Diagnostic muscle biopsies in the era of genetics: the added value of myopathology in a selection of limb-girdle muscular dystrophy patients. Acta Neurol Belg 121, 1019–1033 (2021). https://doi.org/10.1007/s13760-020-01559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01559-0

Keywords

Navigation