Skip to main content

Advertisement

Log in

The sensitivity of event-related potentials/fields to logopedic interventions in patients with stroke-related aphasia

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2022

This article has been updated

Abstract

Recovery of stroke-related aphasia can be affected by language therapy in the early and chronic stage. Objectively monitoring therapy-induced neuroplasticity is possible by several measurement techniques including electro- and magneto-encephalography. The obtained event-related potentials (ERPs) and fields (ERFs) provide insights into the neural basis of intact or deficient language processing with milliseconds precision. In this literature review, we highlight the sensitivity of ERPs and ERFs to logopedic interventions by providing an overview of therapy-induced changes in the amplitude, latency and topography of early and mid-to-late components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Pedersen PM et al (1995) Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol 38(4):659–666

    Article  CAS  PubMed  Google Scholar 

  2. Laska AC et al (2001) Aphasia in acute stroke and relation to outcome. J Intern Med 249(5):413–422

    Article  CAS  PubMed  Google Scholar 

  3. Carod-Artal FJ, Egido JA (2009) Quality of life after stroke: the importance of a good recovery. Cerebrovasc Dis 27(Suppl 1):204–214

    Article  PubMed  Google Scholar 

  4. Aerts A et al (2015) Aphasia therapy early after stroke: behavioural and neurophysiological changes in the acute and post-acute phases. Aphasiology 29(7):845–871

    Article  Google Scholar 

  5. Zhang J et al (2017) Constraint-induced aphasia therapy in post-stroke aphasia rehabilitation: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 12(8):e0183349

    Article  PubMed  PubMed Central  Google Scholar 

  6. Turkeltaub PE et al (2011) Are networks for residual language function and recovery consistent across aphasic patients? Neurology 76(20):1726–1734

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hartwigsen G, Saur D (2019) Neuroimaging of stroke recovery from aphasia: insights into plasticity of the human language network. Neuroimage 190:14–31

    Article  PubMed  Google Scholar 

  8. Hamilton RH, Chrysikou EG, Coslett B (2011) Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang 118(1–2):40–50

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cocquyt EM et al (2017) The role of the right hemisphere in the recovery of stroke-related aphasia: a systematic review. J Neurolinguistics 44:68–90

    Article  Google Scholar 

  10. Anglade C, Thiel A, Ansaldo AI (2014) The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: a critical review of literature. Brain Inj 28(2):138–145

    Article  PubMed  Google Scholar 

  11. Kotz SA, Friederici AD (2003) Electrophysiology of normal and pathological language processing. J Neurolinguistics 16(1):43–58

    Article  Google Scholar 

  12. Luck SJ (2014) An introduction to the event-related potential technique. The MIT Press, Cambridge

    Google Scholar 

  13. Pulvermuller F, Shtyrov Y, Hauk O (2009) Understanding in an instant: neurophysiological evidence for mechanistic language circuits in the brain. Brain Lang 110(2):81–94

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cognit Sci 6(2):78–84

    Article  Google Scholar 

  15. Schechter I et al (2005) Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol 116(9):2204–2215

    Article  PubMed  PubMed Central  Google Scholar 

  16. Naatanen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48(1):4–22

    Article  PubMed  Google Scholar 

  17. Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65(5):344–360

    Article  CAS  PubMed  Google Scholar 

  18. Hopf JM et al (2002) Localizing visual discrimination processes in time and space. J Neurophysiol 88(4):2088–2095

    Article  PubMed  Google Scholar 

  19. Gomez Gonzalez CM et al (1994) Sources of attention-sensitive visual event-related potentials. Brain Topogr 7(1):41–51

    Article  CAS  PubMed  Google Scholar 

  20. Naatanen R, Paavilainen P, Reinikainen K (1989) Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neurosci Lett 107(1–3):347–352

    Article  CAS  PubMed  Google Scholar 

  21. Paavilainen P et al (1989) Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol 73(2):129–141

    Article  CAS  PubMed  Google Scholar 

  22. Näätänen R et al (1987) The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl 40:125–131

    PubMed  Google Scholar 

  23. Dehaene-Lambertz G (1997) Electrophysiological correlates of categorical phoneme perception in adults. NeuroReport 8(4):919–924

    Article  CAS  PubMed  Google Scholar 

  24. Aerts A et al (2013) Neurophysiological investigation of phonological input: aging effects and development of normative data. Brain Lang 125(3):253–263

    Article  PubMed  Google Scholar 

  25. Baldeweg T, Williams JD, Gruzelier JH (1999) Differential changes in frontal and sub-temporal components of mismatch negativity. Int J Psychophysiol 33(2):143–148

    Article  CAS  PubMed  Google Scholar 

  26. Rinne T et al (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage 12(1):14–19

    Article  CAS  PubMed  Google Scholar 

  27. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kutas M, Hillyard SA (1980) Event-related brain potentials to semantically inappropriate and surprisingly large words. Biol Psychol 11(2):99–116

    Article  CAS  PubMed  Google Scholar 

  29. Lau EF, Phillips C, Poeppel D (2008) A cortical network for semantics: (de) constructing the N400. Nat Rev Neurosci 9(12):920–933

    Article  CAS  PubMed  Google Scholar 

  30. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hagoort P et al (2004) Integration of word meaning and world knowledge in language comprehension. Science 304(5669):438–441

    Article  CAS  PubMed  Google Scholar 

  32. Aaltonen O et al (1993) Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain Lang 44(2):139–152

    Article  CAS  PubMed  Google Scholar 

  33. Ilvonen T et al (2004) The processing of speech and non-speech sounds in aphasic patients as reflected by the mismatch negativity (MMN). Neurosci Lett 366(3):235–240

    Article  CAS  PubMed  Google Scholar 

  34. Wertz RT et al (1998) 27th clinical aphasiology conference, Bigfork, Montana, USA, June 1997: a comparison of the mismatch negativity (MMN) event-related potential to tone and speech stimuli in normal and aphasic adults. Aphasiology 12(7–8):499–507

    Article  Google Scholar 

  35. Csépe V et al (2001) Impaired speech perception in aphasic patients: event-related potential and neuropsychological assessment. Neuropsychologia 39(11):1194–1208

    Article  PubMed  Google Scholar 

  36. Aerts A et al (2015) Neurophysiological sensitivity for impaired phonological processing in the acute stage of aphasia. Brain Lang 149:84–96

    Article  PubMed  Google Scholar 

  37. Ilvonen TM et al (2003) Auditory discrimination after left-hemisphere stroke: a mismatch negativity follow-up study. Stroke 34(7):1746–1751

    Article  PubMed  Google Scholar 

  38. Becker F, Reinvang I (2007) Mismatch negativity elicited by tones and speech sounds: changed topographical distribution in aphasia. Brain Lang 100(1):69–78

    Article  PubMed  Google Scholar 

  39. Auther LL et al (2000) Relationships among the mismatch negativity (MMN) response, auditory comprehension, and site of lesion in aphasic adults. Aphasiology 14(5–6):461–470

    Article  Google Scholar 

  40. Korpelainen JT et al (2000) Auditory P300 event related potential in minor ischemic stroke. Acta Neurol Scand 101(3):202–208

    Article  CAS  PubMed  Google Scholar 

  41. Onofrj M et al (1992) Delayed P3 event-related potentials (ERPs) in thalamic hemorrhage. Electroencephalogr Clin Neurophysiol 83(1):52–61

    Article  CAS  PubMed  Google Scholar 

  42. Trinka E et al (2000) Delayed visual P3 in unilateral thalamic stroke. Eur J Neurol 7(5):517–522

    Article  CAS  PubMed  Google Scholar 

  43. Dejanovic M et al (2015) The role of P300 event-related potentials in the cognitive recovery after the stroke. Acta Neurol Belg 115(4):589–595

    Article  PubMed  Google Scholar 

  44. Gummow LJ, Dustman RE, Keaney RP (1986) Cerebrovascular accident alters P300 event-related potential characteristics. Electroencephalogr Clin Neurophysiol 63(2):128–137

    Article  CAS  PubMed  Google Scholar 

  45. D'Arcy RC et al (2003) Electrophysiological assessment of language function following stroke. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 114(4):662–672

    Article  Google Scholar 

  46. Swaab T, Brown C, Hagoort P (1997) Spoken sentence comprehension in aphasia: event-related potential evidence for a lexical integration deficit. J Cognitive Neurosci 9(1):39–66

    Article  CAS  Google Scholar 

  47. Kawohl W et al (2010) Semantic event-related potential components reflect severity of comprehension deficits in aphasia. Neurorehabilitation and neural repair 24(3):282–289

    Article  CAS  PubMed  Google Scholar 

  48. Pulvermuller F et al (2001) Constraint-induced therapy of chronic aphasia after stroke. Stroke 32(7):1621–1626

    Article  CAS  PubMed  Google Scholar 

  49. Barbancho MA et al (2015) Bilateral brain reorganization with memantine and constraint-induced aphasia therapy in chronic post-stroke aphasia: an ERP study. Brain Lang 145–146:1–10

    Article  PubMed  Google Scholar 

  50. MacGregor LJ et al (2015) Ultra-rapid access to words in chronic aphasia: the effects of intensive language action therapy (ILAT). Brain Topogr 28(2):279–291

    Article  PubMed  Google Scholar 

  51. Mohr B et al (2016) Hemispheric contributions to language reorganisation: an MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia 93:413–424

    Article  PubMed  Google Scholar 

  52. Lucchese G et al (2017) Therapy-induced neuroplasticity of language in chronic post stroke aphasia: a mismatch negativity study of (A) grammatical and meaningful/less mini-constructions. Front Human Neurosci 10:669

    Article  Google Scholar 

  53. Becker F, Reinvang I (2007) Event-related potentials indicate bi-hemispherical changes in speech sound processing during aphasia rehabilitation. J Rehabil Med 39(8):658–661

    Article  PubMed  Google Scholar 

  54. Pulvermüller F et al (2005) Therapy-related reorganization of language in both hemispheres of patients with chronic aphasia. Neuroimage 28(2):481–489

    Article  PubMed  Google Scholar 

  55. Shewan CM, Kertesz A (1980) Reliability and validity characteristics of the western aphasia battery (WAB). J Speech Hearing Disord 45(3):308–324

    Article  CAS  PubMed  Google Scholar 

  56. Wilson KR et al (2012) Changes in N400 topography following intensive speech language therapy for individuals with aphasia. Brain Lang 123(2):94–103

    Article  PubMed  Google Scholar 

  57. Huber W, Poeck K, Willmes K (1984) The aachen aphasia test. Adv Neurol 42:291–303

    CAS  PubMed  Google Scholar 

  58. E Kaplan, H Goodglass, S Weintraub (1983) Boston naming test. Philadelphia, Lee and Febiger Inc.

  59. De Renzi E, Vignolo LA (1962) The token test: a sensitive test to detect receptive disturbances in aphasics. Brain J Neurol 85:665–678

    Article  Google Scholar 

  60. Breier JI et al (2009) Behavioral and neurophysiologic response to therapy for chronic aphasia. Arch Phys Med Rehabil 90(12):2026–2033

    Article  PubMed  PubMed Central  Google Scholar 

  61. Breier JI et al (2007) Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: a case study. Neurocase 13(3):169–177

    Article  PubMed  Google Scholar 

  62. Woodhead ZVJ et al (2017) Auditory training changes temporal lobe connectivity in ‘Wernicke’s aphasia’: a randomised trial. J Neurol Neurosurg Psychiatry 88(7):586–594

    Article  PubMed  Google Scholar 

  63. Cornelissen K et al (2003) Adult brain plasticity elicited by anomia treatment. J Cognit Neurosci 15(3):444–461

    Article  Google Scholar 

  64. Laganaro M et al (2008) Normalisation and increase of abnormal ERP patterns accompany recovery from aphasia in the post-acute stage. Neuropsychologia 46(8):2265–2273

    Article  PubMed  Google Scholar 

  65. Kiang M et al (2013) Test-retest reliability and stability of N400 effects in a word-pair semantic priming paradigm. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 124(4):667–674

    Article  Google Scholar 

  66. Besche-Richard C et al (2014) Behavioral and brain measures (N400) of semantic priming in patients with schizophrenia: test-retest effect in a longitudinal study. Psychiatry Clin Neurosci 68(5):365–373

    Article  PubMed  Google Scholar 

  67. Lew HL, Gray M, Poole JH (2007) Temporal stability of auditory event-related potentials in healthy individuals and patients with traumatic brain injury. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 24(5):392–397

    Google Scholar 

  68. Cassidy SM, Robertson IH, O'Connell RG (2012) Retest reliability of event-related potentials: evidence from a variety of paradigms. Psychophysiology 49(5):659–664

    Article  PubMed  Google Scholar 

  69. Ehlers MR, Herrero CL, Kastrup A, Hildebrandt H (2015) The P300 in middle cerebral artery strokes or hemorrhages: outcome predictions and source localization. Clin Neurophysiol 126(8):1532–1538

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissa-Marie Cocquyt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Search strategies

Appendix 1: Search strategies

Pubmed

1. “Aphasia” [Mesh:NoExp] OR “Aphasia, Broca” [Mesh] OR “Aphasia, Conduction” [Mesh] OR “Aphasia, Wernicke” [Mesh] OR “aphasia” [TIAB] OR “aphasic” [TIAB] OR “Dyslexia, Acquired” [Mesh] OR “acquired dyslexia” [TIAB] OR “alexia” [TIAB] OR “alexic” [TIAB] OR “Anomia” [Mesh] OR “anomia” [TIAB] OR “anomic” [TIAB] OR “Agraphia” [Mesh] OR “acquired dysgraphia” [TIAB] OR “agraphia” [TIAB] OR “agraphic” [TIAB].

2. “Electroencephalography” [Mesh] OR “electroencephalography” [TIAB] OR “electroencephalographic” [TIAB] OR “electroencephalogram” [TIAB] OR “electro-encephalography” [TIAB] OR “electro-encephalographic” [TIAB] OR “electro-encephalogram” [TIAB] OR “encephalography” [TIAB] OR encephalographic* [TIAB] OR “encephalogram” [TIAB] OR “Electrophysiology” [Mesh:NoExp] OR electrophysiologic* [TIAB] OR “electrophysiology” [TIAB] OR “EEG” [TIAB] OR “ERP” [TIAB] OR “ERP’s” [TIAB] OR “EP” [TIAB] OR “EP’s” [TIAB] OR “Evoked Potentials” [Mesh] OR “potential” [TIAB] OR “potentials” [TIAB] OR “Neurophysiology” [Mesh] OR “neurophysiology” [TIAB] OR neurophysiologic* [TIAB] OR “Magnetoencephalography” [Mesh] OR “magnetoencephalography” [TIAB] OR “magnetoencephalographic” [TIAB] OR “MEG” [TIAB] OR “magnetoencephalogram” [TIAB] OR “magneto-encephalography” [TIAB] OR “magneto-encephalographic” [TIAB] OR “magneto-encephalogram” [TIAB] OR “mismatch” [TIAB] OR “MMN” [TIAB] OR “P300” [TIAB] OR “N400” [TIAB] OR “P600” [TIAB].

3. "Language"[Mesh:NoExp] OR “language” [TIAB] OR “Linguistics” [Mesh:NoExp] OR linguistic* [TIAB] OR “Phonetics” [Mesh] OR “phonology” [TIAB] OR phonologic* [TIAB] OR “Semantics” [Mesh] OR semantic* [TIAB] OR “lexical-semantic” [TIAB] OR “lexico-semantic” [TIAB] OR “lexicosemantic” [TIAB] OR “grammar” [TIAB] OR grammatic* [TIAB] OR “syntax” [TIAB] OR “syntaxis” [TIAB] OR syntactic* [TIAB] OR “morphosyntaxis” [TIAB] OR morphosyntactic* [TIAB] OR “morpho-syntaxis” [TIAB] OR morpho-syntactic* [TIAB] OR “Rehabilitation” [Mesh:NoExp] OR “rehabilitation” [TIAB] OR “treatment” [TIAB] OR “treatments” [TIAB] OR “Language Therapy” [Mesh] OR “therapy” [TIAB] OR “therapies” [TIAB] OR “intervention” [TIAB] OR “interventions” [TIAB] OR “Follow-Up Studies” [Mesh] OR “follow-up” [TIAB] OR “follow up” [TIAB] OR “longitudinal” [TIAB] OR “Neuronal Plasticity” [Mesh] OR “plasticity” [TIAB] OR “neuroplasticity” [TIAB] OR “neuroplastic” [TIAB] OR “language reorganization” [TIAB] OR “language reorganisation” [TIAB].

4. 1 AND 2 AND 3

Web of science

1. TS = (“aphasia”) OR TS = (“aphasic”) OR TS = (“acquired dyslexia”) OR TS = (“alexia”) OR TS = (“alexic”) OR TS = (“anomia”) OR TS = (“anomic”) OR TS = (“acquired dysgraphia”) OR TS = (“agraphia”) OR TS = (“agraphic”).

2. TS = (“electroencephalography”) OR TS = (“electroencephalographic”) OR TS = (“electroencephalogram”) OR TS = (“electro-encephalography”) OR TS = (“electro-encephalographic”) OR TS = (“electro-encephalogram”) OR TS = (“encephalography”) OR TS = (“encephalographic*”) OR TS = (“encephalogram”) OR TS = (“electrophysiologic*”) OR TS = (“electrophysiology”) OR TS = (“EEG”) OR TS = (“ERP”) OR TS = (“ERP’s”) OR TS = (“EP”) OR TS = (“EP’s”) OR TS = (“potential”) OR TS = (“potentials”) OR TS = (“neurophysiology”) OR TS = (“neurophysiologic*”) OR TS = (“magnetoencephalography”) OR TS = (“MEG”) OR TS = (“magnetoencephalogram”) OR TS = (“magnetoencephalographic”) OR TS = (“magneto-encephalography”) OR TS = (“magneto-encephalogram”) OR TS = (“magneto-encephalographic”) OR TS = (“mismatch”) OR TS = (“MMN”) OR TS = (“P300”) OR TS = (“N400”) OR TS = (“P600”).

3. TS = (“language”) OR TS = (“linguistic*”) OR TS = (“phonology”) OR TS = (“phonologic*”) OR TS = (“semantic*”) OR TS = (“lexical-semantic”) OR TS = (“lexico-semantic”) OR TS = (“lexicosemantic”) OR TS = (“grammar”) OR TS = (“grammatic*”) OR TS = (“syntax”) OR TS = (“syntaxis”) OR TS = (“syntactic*”) OR TS = (“morphosyntaxis”) OR TS = (“morphosyntactic*”) OR TS = (“morpho-syntaxis”) OR TS = (“morpho-syntactic*”) OR TS = (“rehabilitation”) OR TS = (“treatment”) OR TS = (“treatments”) OR TS = (“therapy”) OR TS = (“therapies”) OR TS = (“intervention”) OR TS = (“interventions”) OR TS = (“follow-up”) OR TS = (“follow up”) OR TS = (“longitudinal”) OR TS = (“plasticity”) OR TS = (“neuroplasticity”) OR TS = (“neuroplastic”) OR TS = (“language reorganization”) OR TS = (“language reorganisation”).

4. 1 AND 2 AND 3

Embase

1. ‘aphasia’/de OR ‘conduction aphasia’/de OR ‘cortical sensory aphasia’/de OR ‘aphasia’:ab,ti OR ‘aphasic’:ab,ti OR ‘alexia’/exp OR ‘alexia’:ab,ti OR ‘alexic’:ab,ti OR ‘acquired dyslexia’:ab,ti OR ‘anomia’/de OR ‘anomia’:ab,ti OR ‘anomic’:ab,ti OR ‘agraphia’/de OR ‘agraphia’:ab,ti OR ‘agraphic’:ab,ti OR ‘acquired dysgraphia’:ab,ti.

2. ‘electroencephalography’/exp OR ‘electroencephalography’:ab,ti OR ‘electroencephalogram’/de OR ‘electroencephalogram’:ab,ti OR ‘electroencephalographic’:ab,ti OR ‘electro-encephalography’:ab,ti OR ‘electro-encephalogram’:ab,ti OR ‘electro-encephalographic’:ab,ti OR ‘encephalography’:ab,ti OR encephalographic*:ab,ti OR ‘encephalogram’:ab,ti OR ‘electrophysiology’/de OR electrophysiologic*:ab,ti OR ‘electrophysiology’:ab,ti OR ‘EEG’:ab,ti OR ‘ERP’:ab,ti OR ‘EP’:ab,ti OR ‘event related potential’/exp OR ‘potential’:ab,ti OR ‘potentials’:ab,ti OR ‘neurophysiology’/de OR ‘neurophysiology’:ab,ti OR neurophysiologic*:ab,ti OR ‘magnetoencephalography’/de OR ‘magnetoencephalography’:ab,ti OR ‘MEG’:ab,ti OR ‘magnetoencephalogram’:ab,ti OR ‘magnetoencephalographic’:ab,ti OR ‘magneto-encephalography’:ab,ti OR ‘magneto-encephalogram’:ab,ti OR ‘magneto-encephalographic’:ab,ti OR ‘mismatch’:ab,ti OR ‘MMN’:ab,ti OR ‘P300′:ab,ti OR ‘N400′:ab,ti OR ‘P600′:ab,ti.

3. ‘language’/de OR ‘language’:ab,ti OR ‘linguistics’/de OR linguistic*:ab,ti OR ‘phonetics’/de OR ‘phonology’:ab,ti OR phonologic*:ab,ti OR ‘semantics’/de OR semantic*:ab,ti OR ‘lexical-semantic’:ab,ti OR ‘lexico-semantic’:ab,ti OR ‘lexicosemantic’:ab,ti OR ‘grammar’/de OR ‘grammar’:ab,ti OR grammatic*:ab,ti OR ‘syntax’:ab,ti OR ‘syntaxis’:ab,ti OR syntactic*:ab,ti OR ‘morphosyntaxis’:ab,ti OR morphosyntactic*:ab,ti OR ‘morpho-syntaxis’:ab,ti OR ‘morpho-syntactic*’:ab,ti OR ‘rehabilitation’/de OR ‘rehabilitation’:ab,ti OR ‘treatment’:ab,ti OR ‘treatments’:ab,ti OR ‘language therapy’/de OR ‘therapy’:ab,ti OR ‘therapies’:ab,ti OR ‘intervention’:ab,ti OR ‘interventions’:ab,ti OR ‘follow up’/de OR ‘follow-up’:ab,ti OR ‘follow up’:ab,ti OR ‘longitudinal’:ab,ti OR ‘nerve cell plasticity’/de OR ‘plasticity’:ab,ti OR ‘neuroplasticity’:ab,ti OR neuroplastic*:ab,ti OR ‘language reorganization’:ab,ti OR ‘language reorganisation’:ab,ti.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocquyt, EM., Vandewiele, M., Bonnarens, C. et al. The sensitivity of event-related potentials/fields to logopedic interventions in patients with stroke-related aphasia. Acta Neurol Belg 120, 805–817 (2020). https://doi.org/10.1007/s13760-020-01378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01378-3

Keywords

Navigation