Skip to main content

Advertisement

Log in

Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Glutamate is considered as the predominant excitatory neurotransmitter in the mammalian central nervous systems (CNS). Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the main glutamate-gated ionotropic channels that mediate the majority of fast synaptic excitation in the brain. AMPARs are highly dynamic that constitutively move into and out of the postsynaptic membrane. Changes in the postsynaptic number of AMPARs play a key role in controlling synaptic plasticity and also brain functions such as memory formation and forgetting development. Impairments in the regulation of AMPAR function, trafficking, and signaling pathway may also contribute to neuronal hyperexcitability and epileptogenesis process, which offers AMPAR as a potential target for epilepsy therapy. Over the last decade, various types of AMPAR antagonists such as perampanel and talampanel have been developed to treat epilepsy, but they usually show limited efficacy at low doses and produce unwanted cognitive and motor side effects when administered at higher doses. In the present article, the latest findings in the field of molecular mechanisms controlling AMPAR biology, as well as the role of these mechanism dysfunctions in generating epilepsy will be reviewed. Also, a comprehensive summary of recent findings from clinical trials with perampanel, in treating epilepsy, glioma-associated epilepsy and Parkinson’s disease is provided. Finally, antisense oligonucleotide therapy as an alternative strategy for the efficient treatment of epilepsy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3):464–474

    Article  PubMed  PubMed Central  Google Scholar 

  2. Banerjee PN, Filippi D, Hauser WA (2009) The descriptive epidemiology of epilepsy—a review. Epilepsy Res 85(1):31–45

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fritschy JM (2008) Epilepsy, E/I balance and GABAA receptor plasticity. Front Mol Neurosci 1:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Koch U, Magnusson AK (2009) Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol 19(3):305–310

    Article  CAS  PubMed  Google Scholar 

  5. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    Article  CAS  PubMed  Google Scholar 

  6. Ahmadian G, Ju W, Liu L et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23(5):1040–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321):2042–2045

    Article  CAS  PubMed  Google Scholar 

  8. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  9. Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(suppl 1):S21–S38

    Article  CAS  PubMed  Google Scholar 

  10. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17(1):31–108

    Article  CAS  PubMed  Google Scholar 

  11. Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

    Article  CAS  PubMed  Google Scholar 

  13. Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713

    Article  CAS  PubMed  Google Scholar 

  14. Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283

    Article  CAS  PubMed  Google Scholar 

  15. Sommer B, Keinanen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585

    Article  CAS  PubMed  Google Scholar 

  16. Mosbacher J, Schöpfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266(5187):1059–1062

    Article  CAS  PubMed  Google Scholar 

  17. Greger IH, Watson JF, Cull-Candy SG (2017) Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730

    Article  CAS  PubMed  Google Scholar 

  18. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62

    CAS  PubMed  Google Scholar 

  19. Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53(9):41–58

    Article  CAS  PubMed  Google Scholar 

  20. Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mol Neurobiol 45(1):61–75

    Article  CAS  PubMed  Google Scholar 

  21. Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031

    Article  CAS  PubMed  Google Scholar 

  22. Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J (2002) Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 15(1):51–62

    Article  PubMed  Google Scholar 

  23. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  24. Morris RG, Moser E, Riedel G et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc B 358(1432):773–786

    Article  CAS  Google Scholar 

  25. Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). CSH Perspect Biol 4(6):a005710

    Google Scholar 

  27. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg 2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

    Article  CAS  PubMed  Google Scholar 

  28. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  29. Asrar S, Zhou Z, Ren W, Jia Z (2009) Ca2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS ONE 4(2):e4339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fleming JJ, England PM (2010) AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol 6(2):89–97

    Article  CAS  PubMed  Google Scholar 

  31. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317

    Article  CAS  PubMed  Google Scholar 

  32. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    Article  CAS  PubMed  Google Scholar 

  33. Klann E (2002) Metaplastic protein phosphatases. Learn Memory 9(4):153–155

    Article  Google Scholar 

  34. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11

    Article  CAS  PubMed  Google Scholar 

  35. Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haering S, Tapken D, Pahl S, Hollmann M (2014) Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. Membranes 4(3):469–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Henley JM, Barker EA, Glebov OO (2011) Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci 34(5):258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kapitein LC, Schlager MA, Kuijpers M et al (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20(4):290–299

    Article  CAS  PubMed  Google Scholar 

  39. Perestenko PV, Henley JM (2003) Characterization of the intracellular transport of GluR1 and GluR2 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 278(44):43525–43532

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267

    Article  CAS  PubMed  Google Scholar 

  41. Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105(3):331–343

    Article  CAS  PubMed  Google Scholar 

  42. Williams SL (2017) AMPA receptors in the development and treatment of epilepsy. UCL (University College London).

  43. Lin DT, Makino Y, Sharma K et al (2009) Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat Neurosci 12(7):879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Y, Xb W, Frerking M, Zhou Q (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105(32):11388–11393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85(4):787–803

    Article  CAS  PubMed  Google Scholar 

  47. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22(3):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M (2005) NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28(4):650–660

    Article  CAS  PubMed  Google Scholar 

  49. Connor SA, Wang YT (2016) A place at the table: LTD as a mediator of memory genesis. Neurosci 22(4):359–371

    CAS  Google Scholar 

  50. Migues PV, Liu L, Archbold GE et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36(12):3481–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473

    Article  CAS  PubMed  Google Scholar 

  52. Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15(1):11–27

    Article  PubMed  PubMed Central  Google Scholar 

  53. Glebov OO, Tigaret CM, Mellor JR, Henley JM (2015) Clathrin-independent trafficking of AMPA receptors. J Neurosci 35(12):4830–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanley JG, Henley JM (2005) PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO J 24(18):3266–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Daw MI, Chittajallu R, Bortolotto ZA et al (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28(3):873–886

    Article  CAS  PubMed  Google Scholar 

  56. Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 107(44):19038–19043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanley JG (2007) NSF binds calcium to regulate its interaction with AMPA receptor subunit GluR2. J Neurochem 101(6):1644–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanley JG, Khatri L, Hanson PI, Ziff EB (2002) NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34(1):53–67

    Article  CAS  PubMed  Google Scholar 

  59. Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36(4):661–674

    Article  CAS  PubMed  Google Scholar 

  60. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21(15):5417–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23(27):9220–9228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Wang Y, Chi Z et al (2011) The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell 145(2):284–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fiuza M, Rostosky CM, Parkinson GT et al (2017) PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 216(10):3323–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. Front Cell Neurosci 12:362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5(8):888–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA A conductance in hippocampal interneurons. Nat Commun 2:376

    Article  PubMed  CAS  Google Scholar 

  67. Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE (2018) Structure of a human synaptic GABA A receptor. Nature 559(7712):67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Machu TK, Firestone JA, Browning MD (1993) Ca2+/calmodulin-dependent protein kinase II and protein kinase C phosphorylate a synthetic peptide corresponding to a sequence that is specific for the γ2L subunit of the GABAA receptor. J Neurochem 61(1):375–377

    Article  CAS  PubMed  Google Scholar 

  69. Mcdonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABAA receptorβ2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10):1377–1385

    Article  CAS  PubMed  Google Scholar 

  70. Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J Neurosci 27(52):14326–14337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petrini EM, Ravasenga T, Hausrat TJ et al (2014) Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP. Nat Commun 5:3921

    Article  CAS  PubMed  Google Scholar 

  72. Abramian AM, Comenencia-Ortiz E, Vithlani M et al (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285(53):41795–41805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bright DP, Smart TG (2013) Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 38(10):3408–3423

    Article  PubMed  Google Scholar 

  74. Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70(3):385–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Petrini EM, Barberis A (2014) Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 8:300

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor–mediated excitotoxicity in humans. Ann Neurol 37(1):123–126

    Article  CAS  PubMed  Google Scholar 

  77. Coombs ID, Soto D, Zonouzi M et al (2012) Cornichons modify channel properties of recombinant and glial AMPA receptors. J Neurosci 32(29):9796–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peng PL, Zhong X, Tu W et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49(5):719–733

    Article  CAS  PubMed  Google Scholar 

  79. Wen W, Lin CY, Niu L (2017) R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 7(1):13654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB Jr (2010) Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil 115(6):461–472

    Article  PubMed  Google Scholar 

  81. Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14(12):1517–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2012) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pigeat R, Chausson P, Dreyfus FM, Leresche N, Lambert RC (2015) Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 35(1):64–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15879–15893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Terunuma M, Jang IS, Ha SH et al (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 24(32):7074–7084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirano T, Kawaguchi SY (2014) Regulation and functional roles of rebound potentiation at cerebellar stellate cell—Purkinje cell synapses. Front Cell Neurosci 8:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kanematsu T, Mizokami A, Watanabe K, Hirata M (2007) Regulation of GABAA-receptor surface expression with special reference to the involvement of GABARAP (GABAA receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104(4):285–292

    Article  CAS  PubMed  Google Scholar 

  88. Tretter V, Moss SJ (2008) GABAAreceptor dynamics and constructing GABAergic synapses. Front Mol Neurosci 1:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59(1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kapur J (2018) Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open 3(Suppl 2):165–168

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54(8):1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rogawski MA (2011) Revisiting AMPA receptors as an antiepileptic drug target: revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 11(2):56–63

    Article  PubMed  PubMed Central  Google Scholar 

  93. Patsalos PN (2015) The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56(1):12–27

    Article  CAS  PubMed  Google Scholar 

  94. Beretta S, Padovano G, Stabile A et al (2017) Efficacy and safety of perampanel oral loading in post-anoxic super-refractory status epilepticus: a case series. Epilepsia 58(Suppl 5):S5–S199

    Google Scholar 

  95. Redecker J, Wittstock M, Benecke R, Rösche J (2015) Efficacy of perampanel in refractory nonconvulsive status epilepticus and simple partial status epilepticus. Epilepsy Behav 45:176–179

    Article  PubMed  Google Scholar 

  96. Brigo F, Lattanzi S, Rohracher A et al (2018) Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsy Behav 86:179–186

    Article  PubMed  Google Scholar 

  97. Lange F, Weßlau K, Porath K et al (2019) AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS ONE 14(2):e0211644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Corsi L, Mescola A, Alessandrini A (2019) Glutamate receptors and glioblastoma multiforme: an old “route” for new perspectives. Int J Mol Sci 20(7):1796

    Article  CAS  PubMed Central  Google Scholar 

  99. Lattanzi S, Striano P (2019) The impact of perampanel and targeting AMPA transmission on anti-seizure drug discovery. Expert Opin Drug Discov 14(3):195–197

    Article  CAS  PubMed  Google Scholar 

  100. Izumoto S, Miyauchi M, Tasaki T et al (2018) Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res 38(7):4361–4366

    Article  CAS  PubMed  Google Scholar 

  101. Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38(6):1153–1178

    Article  PubMed  PubMed Central  Google Scholar 

  102. Johnson KA, Conn PJ, Niswender CM (2009) Niswender, Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol Disord 8(6):475–491

    Article  CAS  Google Scholar 

  103. Chase TN, Oh J, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(2):II36–II42

    PubMed  Google Scholar 

  104. Lattanzi S, Grillo E, Brigo F, Silvestrini M (2018) Efficacy and safety of perampanel in Parkinson’s disease. A systematic review with meta-analysis. J Neurol 265(4):733–740

    Article  CAS  PubMed  Google Scholar 

  105. Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 127(197):9–18

    Article  CAS  Google Scholar 

  106. Danielsson I, Su KG, Kauer L et al (2004) Talampanel and human cortical excitability: EEG and TMS. Epilepsia 45:120–121

    Google Scholar 

  107. Meldrum BS, Rogawski MA (2007) Molecular targets for antiepileptic drug development. Neurotherapeutics 4(1):18–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Penn AC, Greger IH (2009) Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biol 6(5):517–521

    Article  CAS  PubMed  Google Scholar 

  109. Lykens NM, Coughlin DJ, Reddi JM, Lutz GJ, Tallent MK (2017) AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability. PLoS ONE 12(2):e0171538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gan Q, Salussolia CL, Wollmuth LP (2015) Assembly of AMPA receptors: mechanisms and regulation. J Physiol 593(1):39–48

    Article  CAS  PubMed  Google Scholar 

  111. Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bannai H, Niwa F, Sherwood MW et al (2015) Bidirectional control of synaptic GABAAR clustering by glutamate and calcium. Cell Rep 13(12):2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to the writing of the manuscript. MRJ contributed to the writing of the manuscript, advised the conceptual ideas and provided critical feedback on the early draft. AKM conceived the project, performed critical analysis of the current topics, contributed to the writing of the manuscript, and supervised the project. All authors reviewed the final draft.

Corresponding author

Correspondence to Amin Karimi-Moghadam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charsouei, S., Jabalameli, M.R. & Karimi-Moghadam, A. Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology. Acta Neurol Belg 120, 531–544 (2020). https://doi.org/10.1007/s13760-020-01318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01318-1

Keywords

Navigation