Skip to main content
Log in

First-order logic as a constraint satisfaction problem

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we discourse an analysis of classical first-order predicate logic as a constraint satisfaction problem, CSP. First, we will offer our general framework for CSPs, and then apply it to first-order logic. We claim it would function as a new semantics, constraint semantics, for logic. Then, we prove the soundness and completeness theorems with respect to the constraint semantics. The latter theorem, which will be proven by a proof-search method, implies the cut-elimination theorem. Furthermore, using the constraint semantics, we make a new proof of the Craig interpolation theorem. Also, we will provide feasible algorithms to generate interpolants for some decidable fragments of first-order logic: the propositional logic and the monadic fragments. The algorithms, reflecting a ‘projection’ of an indexed relation, will show how to transform given formulas syntactically to obtain interpolants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These works were brought to our attention by an anonymous referee.

References

  1. Andreka, H., van Benthem, J., Nemeti, I.: Modal languages and bounded fragments of predicate logic. J. Philosoph. Logic 27, 217–274 (1998)

    Article  MathSciNet  Google Scholar 

  2. Apt, K.R., Vermeulen, C.F.M.: First-Order Logic as a Constraint Programming Language. In: Baaz M., Voronkov A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR, : Lecture Notes in Computer Science, vol. 2514, p. 2002. Springer, Berlin, Heidelberg (2002)

  3. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint Propagation as a Proof System. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming-CP 2004. Lecture Notes in Computer Science, vol. 3258. Springer, Berlin, Heidelberg (2004)

  4. Barany, V., Cate, B.T., Segoufin, L.: Guarded negation. J. ACM Assoc. Comput. Mach. 62(3), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bibel, W.: Constraint satisfaction from a deductive viewpoint. Artif. Intell. 35, 401–413 (1988)

    Article  MathSciNet  Google Scholar 

  6. Colmerauer, A.: Prolog II reference manual and theoretical model, Technical Report. Groupe d’Intelligence Arificielle. Université d’Aix-Marseille II, Luminy (1982)

  7. Craig, W.: Linear reasoning A new form of the Herbrand-Gentzen theorem. J. Symbol. Logic 22, 250–268 (1957)

    Article  MathSciNet  Google Scholar 

  8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symbol. Logic 22, 269–285 (1957)

    Article  MathSciNet  Google Scholar 

  9. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci. 278(1), 25–51 (2002)

    Article  MathSciNet  Google Scholar 

  10. Freuder, E.C., Mackworth, A.K.: Constraint Satisfaction: An Emerging Paradigm, In: F. Rossi, P. van Beek and T. Walsh (ed.), Handbook of Constraint Programming, Elsevier (2006)

  11. Gentzen, G.: Untersuchungen über das logische Schließen I, II, Mathematische Zeitschrift, 39, pp. 176–210; 405–431, 1934, (1935)

  12. Gödel, K.: Über die Vollständigkeit des Logikkalküks, PhD thesis, at Wien University, (1929)

  13. Haralick, R., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  14. Haralick, R., Liu, L., Misshula, E.: Relation Decomposition: The Theory, International Conference on Machine Learning and Data Mining, (MLDM), 2013, New York, July 22-25, (2013)

  15. Jaffar, J., Lassez, J.L.: Constraint logic programming, Technical report, Department of Computer Science, Monash University, (1986)

  16. Kolaitis, P.G., Vardi, M.Y.: A Logical Approach to Constraint Satisfaction. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250. Springer, Berlin, Heidelberg (2007)

  17. Liu, Y.A., Stoller, S.D.: Founded Semantics and Constraint Semantics of Logic Rules. In: Artemov S., Nerode A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science, vol 10703, Springer

  18. Mackworth, A.K.: The logic of constraint satisfaction. Artif. Intell. 58, 3–20 (1992)

    Article  MathSciNet  Google Scholar 

  19. McMillan, K.: Applications of Craig Interpolation to Model Checking, In: Ciardo G., Darondeau P. (eds) Applications and Theory of Petri Nets, ICATPN 2005. Lecture Notes in Computer Science, vol. 3536. Springer, Berlin, Heidelberg (2005)

  20. Schütte, G.: Proof Theory. Springer, Berlin (1977)

    Book  Google Scholar 

  21. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  22. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for first-order logic and inductive definitions. ACM Trans. Comput. Logic 14(3), 1–45 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zhou, N.F.: Combinatorial Search With Picat, International Conference on Logic Programming (ICLP) 2014, Invited talk, (2014)

  24. Zhou, N.F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with Picat, Springer, ISBN:978-3-319-25881-2. (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohiko Kushida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

Here, we give the sequent style proof system LK. Below, Greek capital letters (\(\Gamma , \Delta , \ldots \)) denote a finite sequence of formulas.

  • Initial Sequent:        \( { A \Longrightarrow A} \)       \(\bot , \Gamma \Longrightarrow \Delta \)

  • Logical Inference rule:

figure c

The eigenvariable condition on \(\forall :r\) and \(\exists :l\):

there must not occur x freely in the lower sequent.

  • Structural Inference rule:

figure d

Appendix II

Here, we present a counter-example when A is not in normal form and Theorem 6.1 fails. The following is such an example.

$$\begin{aligned}&A=\forall x(F_1(x) \vee F_2(x) \vee F_3(x)) \wedge (\exists x F_{3}(x) \vee \exists x F_{4}(x)) , \\&\quad ~\hbox { where} F_1=P_1\wedge P_2\wedge P_3;\\&F_2=P_1\wedge \lnot P_2\wedge \lnot P_3;\\&F_3=\lnot P_1\wedge \lnot P_2\wedge P_3;\\&F_4=P_1\wedge \lnot P_2\wedge P_3. \end{aligned}$$

Let \(\pi _C=\pi _{J_{\forall xF_1(x)} \cap J_{\forall xF_3(x)}}\). Then, \((J_{\forall xF^{\pi }_1(x)}, R_{\forall xF^{\pi }_1(x)} )\) belongs to

$$\begin{aligned}&\pi _C(J_{\forall x(F_1(x) \vee F_2(x) \vee F_3(x))}, R_{\forall x(F_1(x) \vee F_2(x) \vee F_3(x))}) \\&\quad \cap \pi _C(J_{\exists x F_{3}(x) \vee \exists x F_{4}(x)}, R_{\exists x F_{3}(x) \vee \exists x F_{4}(x)}) , \end{aligned}$$

but does not belong to

$$\begin{aligned}&\pi _C[(J_{\forall x(F_1(x) \vee F_2(x) \vee F_3(x))}, R_{\forall x(F_1(x) \vee F_2(x) \vee F_3(x))}) \\&\quad \cap (J_{\exists x F_{3}(x) \vee \exists x F_{4}(x)}, R_{\exists x F_{3}(x) \vee \exists x F_{4}(x)})]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushida, H., Haralick, R. First-order logic as a constraint satisfaction problem. Prog Artif Intell 10, 375–389 (2021). https://doi.org/10.1007/s13748-021-00240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-021-00240-8

Keywords

Navigation