Skip to main content
Log in

SMOTE-GPU: Big Data preprocessing on commodity hardware for imbalanced classification

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Nowadays, it is usual to work with large amounts of data since our capacity of collecting and storing information has increased significantly. The extraction of knowledge from these scenarios is commonly known as “Big Data,” and it is performed on large clusters with MapReduce platforms. Imbalanced classification poses a problem both in traditional and Big Data learning scenarios. Data sampling is one of the ways that allows to improve the performance on imbalanced problems. A commodity hardware-based method for Big Data problems can offload these computations from the expensive and highly demanded hardware that MapReduce platforms require. The characteristics of some sampling methods make them suitable to be adapted to commodity hardware, taking advantage of the parallel computation capabilities of graphics processing units. SMOTE is one of the most popular oversampling methods which is based on the nearest neighbor rule. The proposed SMOTE-GPU efficiently handles large datasets (several millions of instances) on a wide variety of commodity hardware, including a laptop computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. http://sci2s.ugr.es/GPU-SME-kNN.

References

  1. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M., Ventura, S., Garrell, J., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  3. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5 (2014)

  4. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

    MATH  Google Scholar 

  6. CUDA. http://www.nvidia.com/object/cuda_home_new.html. Accessed March 2017

  7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  8. ECBDL14 dataset: Protein structure prediction and contact map for the ECBDL2014 big data competition (2014). http://cruncher.ncl.ac.uk/bdcomp/

  9. Fernández, A., del Río, S., Chawla, N.V., Herrera, F.: An insight into imbalanced big data classification: outcomes and challenges. Complex Intell. Syst. (in press). doi:10.1007/s40747-017-0037-9

  10. Foundation, A.S.: Apache Mahout (2017). http://mahout.apache.org/. Accessed March 2017

  11. Gutiérrez, P.D., Lastra, M., Bacardit, J., Benítez, J.M., Herrera, F.: GPU–SME–kNN: scalable and memory efficient \(k\)NN and lazy learning using GPUs. Inf. Sci. 373, 165–182 (2016)

  12. Gutiérrez, P.D., Lastra, M., Herrera, F., Benitez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)

    Article  Google Scholar 

  13. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  14. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)

    Article  Google Scholar 

  15. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progr. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  16. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  17. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)

    Article  Google Scholar 

  18. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al.: MLLIB: machine learning in apache spark. J. Mach. Learn. Res. 17(34), 1–7 (2016)

    MATH  MathSciNet  Google Scholar 

  19. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action, Manning Publications Co., Greenwich, CT, USA, ISBN:1935182684, 9781935182689 (2011)

  20. Prati, R.C., Batista, G.E.A.P.A., Silva, D.F.: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45(1), 247–270 (2015)

    Article  Google Scholar 

  21. Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  22. Salomon-Ferrer, R., Götz, A., Poole, D., Le Grand, S., Walker, R.: Routine microsecond molecular dynamics simulations with amber on GPUS. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9(9), 3878–3888 (2013)

    Article  Google Scholar 

  23. Spark, A.: Machine Learning Library (MLlib) for Spark (2017). http://spark.apache.org/docs/latest/mllib-guide.html. Accessed March 2017

  24. Triguero, I., del Río, S., López, V., Bacardit, J., Benítez, J.M., Herrera, F.: ROSEFW-RF: the winner algorithm for the ECBDL’14 big data competition—an extremely imbalanced big data bioinformatics problem. Knowl. Based Syst. 87, 69–79 (2015)

    Article  Google Scholar 

  25. White, T.: Hadoop: The Definitive Guide, 4th edn. O’Reilly Media Inc, Sebastopol (2015)

    Google Scholar 

  26. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, pp. 1–14. USENIX Association (2012)

  27. Zikopoulos, P.C., Eaton, C., deRoos, D., Deutsch, T., Lapis, G.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, 1st edn. McGraw-Hill, New York (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish National Research Projects TIN2013-47210-P, TIN2014-57251-P and TIN2016-81113-R and by the Andalusian Regional Government Excellence Research Project P12-TIC-2958. P.D. Gutiérrez holds an FPI scholarship from the Spanish Ministry of Economy and Competitiveness (BES-2012-060450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo D. Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, P.D., Lastra, M., Benítez, J.M. et al. SMOTE-GPU: Big Data preprocessing on commodity hardware for imbalanced classification. Prog Artif Intell 6, 347–354 (2017). https://doi.org/10.1007/s13748-017-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-017-0128-2

Keywords

Navigation