Skip to main content
Log in

The Sterile Insect Technique: Success and Perspectives in the Neotropics

  • Forum
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The sterile insect technique (SIT), an environmentally friendly means of control, is currently used against plant, animal, and human pests under the area-wide integrated pest management. It consists in the mass production, sterilization, and release of insects in an affected area where sterile males mate with wild females leading to no reproduction. Here, we review SIT in the Neotropics and focus on particular recent successful cases of eradication of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), as well as effective programs used against the Mexican fruit fly Anastrepha ludens (Loew), the New World screwworm fly Cochliomyia hominivorax (Coquerel)), and the Cactus moth Cactoblastis cactorum (Berg). We examine when SIT does not work and innovations that have made SIT more efficient and also highlight complimentary techniques that can be used in conjunction. We address potential candidate species that could be controlled through SIT, for example Philornis downsi Dodge & Aitken. Finally, we consider the impact of climate change in the context of the use of the SIT against these pests. Given the recent dramatic decline in insect biodiversity, investing in environmentally friendly means of pest control should be a priority. We conclude that SIT should be promoted in the region, and leadership and political will is needed for continued success of SIT in the Neotropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham S, Herrera-Cruz M, Pérez-Staples D (2016) Female remating behaviour in pest tephritid fruit flies and its implication for the sterile insect technique. Proceedings of the 9th International Symposium on Fruit Flies of Economic Importance, Bangkok, pp 323–328

    Google Scholar 

  • Aceituno-Medina M, Ordoñez A, Carrasco M, Montoya P, Hernández E (2020) Mass rearing, quality parameters, and bioconversion in Drosophila suzukii (Diptera: Drosophilidae) for sterile insect technique purposes. J Econ Entomol 113:1097–1104. https://doi.org/10.1093/jee/toaa022

    Article  CAS  PubMed  Google Scholar 

  • Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10:295–311. https://doi.org/10.1089/vbz.2009.0014

    Article  PubMed  PubMed Central  Google Scholar 

  • Anchundia D, Fessl B (2020) The conservation status of the Galapagos Martin Progne modesta: assessment of historical records and results of recent surveys. Bird Cons Inter 1–10. doi:https://doi.org/10.1017/S095927092000009X

  • Andina (2010) Senasa liberará 300 millones de moscas de la fruta estériles semanales en 2011 para reducir plaga en la costa. https://andinape/agencia/noticia-senasa-liberara-300-millones-moscas-de-fruta-esteriles-semanales-2011-para-reducir-plaga-la-costa-277344aspx Accessed 26 May 2020

  • Anno (2019) SAG O’Higgins utiliza innovadora “Técnica de Insecto Estéril” para enfrentar plaga de Lobesia botrana. http://elurbanoruralcl/sag-ohiggins-utiliza-innovadora-tecnica-de-insecto-esteril-para-enfrentar-plaga-de-lobesia-botrana/ Accessed 26 May 2020

  • Arredondo J, Ruiz L, Montoya P, Díaz-Fleischer F (2018) Packing and post-irradiation handling of the Anastrepha ludens (Diptera: Tephritidae) Tapachula-7 genetic sexing strain: combined effects of hypoxia, pupal size, and temperature on adult quality. J Econ Entomol 111:570–574

    PubMed  Google Scholar 

  • Bakri A, Mehta K, Lance R (2005) Sterilizing insects with ionizing radiation. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique, principles and practices in area-wide integrated pest management. Springer, the Netherlands, pp 233–268

    Google Scholar 

  • Bakri A, Enkerlin W, Pereira R, Hendrichs J, Bustos Griffin E, Hallman GJ (2020) Tephritid-related databases: TWD, IDIDAS, IDCT, DIR-SIT. In: Pérez-Staples D, Díaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Raton, pp 369–385

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Google Scholar 

  • Barnes B (2020) Guatemala-Mexico-United States Trinational Moscamed Programme reviewed by technical advisory panel. Fruit fly News 40:1–4

    Google Scholar 

  • Barnes BN, Hofmeyr JH, Groenewald S, Conlong DE, Wohlfarter M (2015) The sterile insect technique in agricultural crops in South Africa: a metamorphosis …. but will it fly? African Entomology 23:1–18. https://doi.org/10.4001/003.023.0103

    Article  Google Scholar 

  • Bernardini F, Haghighat-Khah RE, Galizi R, Hammond AM, Nolan T, Crisanti A (2018) Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes. Parasit Vectors 11:660. https://doi.org/10.1186/s13071-018-3207-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjeliš M, Radunić D, Bulić P (2011) Pre- and post-release quality of sterile Ceratitis capitata males released by an improved automated ground release machine. J Appl Entomol 137:154–162

    Google Scholar 

  • Bond JG, Osorio AR, Avila N, Gómez-Simuta Y, Marina CF, Fernández-Salas I, Liedo P, Dor A, Carvalho DO, Bourtzis WT (2019) Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS One 14:e0212520. https://doi.org/10.1371/journal.pone.0212520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman DD (2006) Successful and currently ongoing parasite eradication programs. Vet Parasitol 139:293–307. https://doi.org/10.1016/j.vetpar.2006.04.020

    Article  PubMed  Google Scholar 

  • Bulgarella M, Quiroga MA, Boulton RA, Ramírez IE, Moon RD, Causton CE, Heimpel GE (2017) Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos islands. Ann Entomol Soc Am 110:317–328. https://doi.org/10.1093/aesa/saw102

    Article  Google Scholar 

  • Bulgarella M, Quiroga MA, Heimpel GE (2019) Additive negative effects of Philornis nest parasitism on small and declining Neotropical bird populations. Bird Cons Inter 29:339–360

    Google Scholar 

  • Bush GL, Neck RW (1976) Screwworm eradication: inadvertent selection for noncompetitive ecotypes during mass rearing. Science 193:491–493

    CAS  PubMed  Google Scholar 

  • Cáceres C, Cayol JP, Enkerlin W Franz G, Hendrichs J, Robinson AS (2002) Comparison of Mediterranean fruit fly (Ceratitis capitata) (Tephritidae) bisexual and genetic sexing strains: development, evaluation and economics. Proceedings of the 6th International Fruit Fly Symposium. 6–10 May, Stellenbosch, South Africa. pp. 367–381

  • Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ, Hochkirch A, Kwak ML, Mammola S, Ari Noriega J, Orfinger AB, Pedraza F, Pryke JS, Roque FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C, Samways MJ (2020) Scientists’ warning to humanity on insect extinctions. Biol Conserv 242:108426. https://doi.org/10.1016/j.biocon.2020.108426

    Article  Google Scholar 

  • Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke AB, Marrelli MT, Virginio JF, Alphey L, Capurro ML (2014) Mass production of genetically modified Aedes aegypti for field releases in Brazil JoVE 3579. https://doi.org/10.3791/3579

  • Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, Malavasi A, Capurro ML (2015) Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis 9:e0003864. https://doi.org/10.1371/journal.pntd.0003864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causton C, Cunninghame F, Tapia W (2013) Management of the avian parasite Philornis downsi in the Galapagos Islands: A collaborative and strategic action plan. In: Galapagos Report 2011-2012. GNPS, GCREG, CDF and GC. Puerto Ayora, Galapagos, Ecuador. pp. 167–173

  • Causton CE, Moon RD, Cimadom A, Boulton RA, Cedeño D, Licango MP, Tebbich S, Ulloa A (2019) Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS One 14:e0224125. https://doi.org/10.1371/journal.pone.0224125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayol JP (2000) Changes in sexual behavior and life history traits of Tephritid species caused by mass-rearing processes. In: Aluja M, Norrbom A (eds) Fruit flies (Tephritidae): Phylogeny and evolution of behavior. CRC press, Boca Raton, Fl, pp 843-860

  • Chatzis I, Dimidis I (2020) Nuclear technique opens new markets for Ecuador’s fruits https://www.iaea.org/newscenter/news/nuclear-technique-opens-new-markets-for-ecuadors-fruits Accessed 26 may 2020

  • Cladera JL, Vilardi JC, Juri M, Paulin LE, Giardini M, Gómez Cendra PV, Segura DF, Lanzavecchia SB (2014) Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 15:S12. https://doi.org/10.1186/1471-2156-15-S2-S12

    Article  PubMed  PubMed Central  Google Scholar 

  • Coloma A, Anchundia D, Piedrahita P, Pike C, Fessl B (2020) Observations on the nesting of the Galapagos dove Zenaida galapagoensis in Galapagos, Ecuador. Galapagos Res 69:34–38

    Google Scholar 

  • Concha C, Palavesam A, Guerrero FD, Sagel A, Li F, Osborne JA, Hernandez Y, Pardo T, Quintero G, Vasquez M, Keller GP, Phillips PL, Welch JB, McMillan WO, Skoda SR, Scott MJ (2016) A transgenic male-only strain of the New World screwworm for an improved control program using the sterile insect technique. BMC Biol 14:72. https://doi.org/10.1186/s12915-016-0296-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes-Ortiz JA, Ruiz AT, Morales-Ramos JA (2016) Insect mass production technologies. In: Insects as Sustainable Food Ingredients. Elsevier, pp. 153–201

  • Culbert NJ, Lees RS, Vreysen MJB, Darby AC, Gilles JRL (2017) Optimised conditions for handling and transport of male Anopheles arabiensis: effects of low temperature, compaction, and ventilation on male quality. Entomol Exp Appl 164:276–283

    Google Scholar 

  • Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ (2009) Historical applications of induced sterilisation in field populations of mosquitoes. Malar J 8:S2. https://doi.org/10.1186/1475-2875-8-S2-S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Darrington M, Dalmay T, Morrison NI, Chapman T (2017) Implementing the sterile insect technique with RNA interference - a review. Entomol Exp Appl 164:155–175. https://doi.org/10.1111/eea.12575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deprá M, Poppe JL, Schmitz HJ, De Toni CD, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383. https://doi.org/10.1007/s10340-014-0591-5

    Article  Google Scholar 

  • Dunn DW, Follett PA (2017) The sterile insect technique (SIT) - an introduction. Entomol Exp Appl 164:151–154. https://doi.org/10.1111/eea.12619

    Article  Google Scholar 

  • Dupuis JR, RuizArce R, Barr NB, Thomas D, Geib SM (2019) Range-wide population genomics of the Mexican fruit fly: toward development of pathway analysis tools. Evol Appl 12:1641–1660. https://doi.org/10.1111/eva.12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Editorial (1975) Oh, New Delhi; oh, Geneva. Nature 256:355–357

    Google Scholar 

  • Enkerlin W (2007) Guidance for packing, shipping, holding and release of sterile flies in area-wide fruit fly control programmes. Food Agric Organ Rome p 134

  • Enkerlin W, Gutiérrez-Ruelas JM, Cortes AV, Roldan EC, Midgarden D, Lira E, López JZ, Hendrichs J, Liedo P, Arriaga FJT (2015) Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach. Fla Entomol 98:665–681. https://doi.org/10.1653/024.098.0242

    Article  Google Scholar 

  • Enkerlin WR, Gutiérrez Ruelas JM, Pantaleon R, Litera CS, Villaseñor-Cortes A, Zavala JL, Orozco-Dávila D, Montoya P, Silva-Villarreal L, Cotoc-Roldán E, Hernández-López F, Arenas-Castillo A, Castellanos D, Dominguez J, Valle-Mora A, Rendón P, Cáceres-Barrios C, Midgarden D, Villatoro C, Lira-Prera E, Zelaya-Estrada O, Castañeda-Aldana R, López Culajay E, Ramírez F (2017) The Moscamed regional programme: review of a success story of area-wide sterile insect technique application. Entomol Exp Appl 164:188–203. https://doi.org/10.1111/eea.12611

    Article  Google Scholar 

  • EPPO (2020) EPPO Global database. In: In: EPPO Global database. EPPO, Paris

    Google Scholar 

  • Evans BR, Kotsakiozi P, Costa-da-Silva AL, Ioshino RS, Garziera L, Pedrosa MC, Malavasi A, Virginio JF, Capurro ML, Powell JR (2019) Transgenic Aedes aegypti mosquitoes transfer genes into a natural population. Sci Rep 9:13047. https://doi.org/10.1038/s41598-019-49660-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO/IAEA/USDA. 2017. Guideline for packing, shipping, holding and release of sterile flies in area-wide fruit fly control programmes, Second edition, by Zavala-López J.L. and Enkerlin W.R. (eds.). Rome, Italy. 140 pp.

  • FAO/IAEA/USDA. 2019. Product quality control for sterile mass-reared and released tephritid fruit flies, Version 7.0. International Atomic Energy Agency, Vienna, Austria. 148 pp

  • Fessl B, Heimpel GE, Causton CE (2018) Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. In: Parker PG (ed) Disease ecology. Springer International Publishing, Cham, pp 213–266

    Google Scholar 

  • Fisher M, Romero J (2018) Latin American countries combat screwworm pest through IAEA project https://www.iaea.org/newscenter/news/latin-american-countries-combat-screwworm-pest-through-iaea-project Accesed 26 May 2020

  • Flores S, Campos S, Villaseñor A, Valle A, Enkerlin W, Toledo J, Liedo P, Montoya P (2013) Sterile males of Ceratitis capitata (Diptera: Tephritidae) as disseminators of Beauveria bassiana conidia for IPM strategies. Biocontrol Sci Tech 23:1186–1198. https://doi.org/10.1080/09583157.2013.822473

    Article  Google Scholar 

  • Flores S, Montoya P, Toledo J, Enkerlin W, Liedo P (2014) Estimation of populations and sterility induction in the Mexican fruit fly Anastrepha ludens (Diptera: Tephritidae). J Econ Entomol 107:1502–1507

    PubMed  Google Scholar 

  • Flores S, Gómez-Escobar E, Liedo P, Toledo J, Montoya P (2017) Density estimation and optimal sterile: wild ratio to induce sterility in Anastrepha obliqua (Diptera: Tephritidae) populations. Entomol Ex Appl 164(3):284–290. https://doi.org/10.1111/eea.12580

    Article  CAS  Google Scholar 

  • Galvin TJ, Wyss JH (1996) Screwworm eradication program in Central America. Ann N Y Acad Sci 791:233–240. https://doi.org/10.1111/j.1749-6632.1996.tb53530.x

    Article  CAS  PubMed  Google Scholar 

  • Garziera L, Pedrosa MC, de Souza FA, Gómez M, Moreira MB, Virginio JF, Capurro ML, Carvalho DO (2017) Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomol Exp Appl 164:327–339. https://doi.org/10.1111/eea.12618

    Article  Google Scholar 

  • Gentile JE, Rund SS, Madey GR (2015) Modelling sterile insect technique to control the population of Anopheles gambiae. Malar J 14:92. https://doi.org/10.1186/s12936-015-0587-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilles JRL, Schetelig MF, Scolari F, Marec F, Capurro ML, Franz G, Bourtzis K (2014) Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Trop 132:S178–S187. https://doi.org/10.1016/j.actatropica.2013.08.015

    Article  PubMed  Google Scholar 

  • Godoy MJ, Costa de Souza G, Picanso L, Pinto WS (2020) Phytosanitary education: an essential component of the eradication actions for the Carambola fruit fly, Bactrocera caramboleae in the Marajo archipelago, Para state, Brazil. In: Pérez-Staples D, Díaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Raton, pp 391–398

    Google Scholar 

  • González GM (2020) La comunicación social en campañas fitosanitarias, In: Montoya P, Toledo J, Hernández E (eds.) Moscas de la Fruta: Fundamentos y Procedimientos para su Manejo. 2d Ed. S y G editores, Mexico city, pp 59-70

  • Gonzalez J, Troncoso P (2007) The fruit fly exclusion programme in Chile. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 641–651

    Google Scholar 

  • Graham OH, Hourrigan JL (1977) Eradication programs for the arthropod parasites of livestocks. J Med Entomol 13:629–258

    CAS  PubMed  Google Scholar 

  • Guillem-Amat A, Ureña E, López-Errasquín E, Navarro-Llopis V, Batterham P, Sánchez L, Perry T, Hernández-Crespo P, Ortego F (2020) Functional characterization and fitness cost of spinosad-resistant alleles in Ceratitis capitata. J Pest Sci 93:1043–1058. https://doi.org/10.1007/s10340-020-01205-x

    Article  Google Scholar 

  • Gutierrez AP, Ponti L, Arias PA (2019) Deconstructing the eradication of new world screwworm in North America: retrospective analysis and climate warming effects. Med Vet Entomol 33:282–295. https://doi.org/10.1111/mve.12362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haye T, Gariepy T, Hoelmer K, Rossi J-P, Streito J-C, Tassus X, Desneux N (2015) Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J Pest Sci 88:665–673. https://doi.org/10.1007/s10340-015-0670-2

    Article  Google Scholar 

  • Hendrichs J, Robinson AS, Cayol JP, Enkerlin W (2002) Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. Fla Entomol 85:1–13

    Google Scholar 

  • Henry LM, May N, Acheampong S, Gillespie DR, Roitberg BD (2010) Host-adapted parasitoids in biological control: does source matter? Ecol Appl 20:242–250. https://doi.org/10.1890/08-1869.1

    Article  PubMed  Google Scholar 

  • Hernández Calderón FA (2016) Etapas de la erradicación y manejo integrado de la mosca de la fruta Ceratitis capitata en la Región Ica. Bsc Thesis, Universidad Nacional Agraria La Molina. Facultad de Agronomía, Lima, Perú

  • Hernández E, Escobar A, Bravo B, Montoya P (2010) Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique. Neotrop Entomol 39:601–607

    PubMed  Google Scholar 

  • Hibino Y, Iwahashi O (1991) Appearance of wild females unreceptive to sterilized males on Okinawa Is. In the eradication program of the Melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl Entomol Zool 26:265–270

    Google Scholar 

  • Hight SD, Carpenter JE (2016) Performance improvement through quality evaluations of sterile cactus moths, Cactoblastis cactorum (Lepidoptera: Pyralidae), mass-reared at two insectaries. Fla Entomol 99:206–214. https://doi.org/10.1653/024.099.sp125

    Article  Google Scholar 

  • Hight SD, Carpenter JE, Bloem S, Bloem KA (2005) Developing a sterile insect release program for Cactoblastis cactorum (berg) (Lepidoptera: Pyralidae): effective overflooding ratios and release-recapture field studies. Environ Entomol 34:850–856. https://doi.org/10.1603/0046-225X-34.4.850

    Article  Google Scholar 

  • Honma A, Ikegawa Y (2020) Exploring cost-effective SIT: verification via simulation of an approach integrating reproductive interference with regular sterile insect release. In: Pérez-Staples D, Díaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Raton, pp 201–209

    Google Scholar 

  • Horber E (1963) Eradication of the white grub (Melolontha vulgaris F.) by the sterile male technique. In: Proceedings of the symposium on the use and application of radioisotopes and radiation in the control of plant and animal insect pests. Radiation and radioisotopes applied to insects of agricultural importance, Athens, Greece, 22–26 April; IAEA: Vienna, Austria, pp: 313–332

  • Huang M, Song X, Li J (2017) Modelling and analysis of impulsive releases of sterile mosquitoes. J Biol Dyn 11:147–171. https://doi.org/10.1080/17513758.2016.1254286

    Article  PubMed  Google Scholar 

  • IAEA (2012) Nuclear technology review. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jin L, Walker AS, Fu G, Harvey-Samuel T, Dafa’alla T, Miles A, Marubbi T, Granville D, Humphrey-Jones N, O’Connell S, Morrison NI, Alphey L (2013) Engineered female-specific lethality for control of pest Lepidoptera. ACS Synth Biol 2:160–166. https://doi.org/10.1021/sb300123m

    Article  CAS  PubMed  Google Scholar 

  • Kean JM, Suckling DM, Sullivan NJ, Tobin PC, Stringer LD, Smith GR, Kimber B, Lee DC, Flores Vargas R, Fletcher J, Macbeth F, McCullough DG, Herms DA et al (2020). Global eradication and response database. http://b3netnz/gerda Accessed 22 May 2020

  • Kellermann V, McEvey SF, Sgrò CM, Hoffmann AA (2020) Phenotypic plasticity for desiccation resistance, climate change and future species distributions: will plasticity have much impact? Am Nat 196:306–315

    PubMed  Google Scholar 

  • Klassen W, Curtis FC (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile Insect Technique. IAEA, Springer, pp 3–38

    Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexual sterile males. J Econ Entomol 48:459–462

    Google Scholar 

  • Knipling EF (1979) Use of insects for self-destruction. In: Agriculture Handbook 512 (ed) The Basic Principles of Insect Population Suppression and management. USDA, pp 315–393

  • Kriticos DJ, Kean JM, Phillips CB, Senay SD, Acosta H, Haye T (2017) The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J Pest Sci 90:1033–1043. https://doi.org/10.1007/s10340-017-0869-5

    Article  Google Scholar 

  • Krüger AP, Schlesener DCH, Martins LN, Wollmann J, Deprá M, Garcia FRM (2018) Effects of irradiation dose on sterility induction and quality parameters of Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 111:741–746. https://doi.org/10.1093/jee/tox349

    Article  PubMed  Google Scholar 

  • Lahuatte PF, Lincango MP, Heimpel GE, Causton CE (2016) Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J Insect Sci 16:84. https://doi.org/10.1093/jisesa/iew064

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanouette G, Brodeur J, Fournier F, Martel V, Vreysen M, Cáceres C, Firlej A (2017) The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: establishing the optimum irradiation dose. PLoS One 12:e0180821. https://doi.org/10.1371/journal.pone.0180821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Pérez LA, Arredondo J, Tejeda MT, Díaz-Fleischer F (2019) Behavioral responses and pupa development patterns after hypoxia or anoxia in a desiccation-resistant Anastrepha ludens strain. Neotrop Entomol 48:739–747. https://doi.org/10.1007/s13744-019-00690-9

    Article  PubMed  Google Scholar 

  • Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Uhd J, Kalinkat JG, Neuvonen S, Niemelä P, Terblanche JS, Økland B, Björkman C (2020) Complex responses of global insect pests to climate warming. Front Ecol Environ 18:141–150. https://doi.org/10.1002/fee.2160

    Article  Google Scholar 

  • Leppla NC, Huettel MD, Chambers DL, Ashley TR, Miyashita D, HWong TTY, Harris EJ (1983) Strategies for colonization and maintenance of Mediterranean fruit fly. Entomol Exp Appl 33:89–96

    Google Scholar 

  • Liedo P, Salgado S, Oropeza A, Toledo J (2007) Improving mating performance of mass-reared sterile Mediterranean fruit flies (Diptera: Tephritidae) through changes in adult holding conditions: demography and mating competitiveness. Fla Entomol 90:33–40

    Google Scholar 

  • Liedo P, Montoya P, Toledo J (2020) Area-wide management of fruit flies in a tropical mango growing area integrating the sterile insect technique and biological control: from research to an operational programme. In: Hendrichs J, Pereira R, Vreysen MJB (eds) Area-wide integrated pest management: development and field application. CRC Press, Boca Raton, pp 197–214

    Google Scholar 

  • Malavasi A, Nascimento AS, Paranhos BJ, Costa MLZ, Walder JMM (2007) Establishment of a Mediterranean fruit fly Ceratitis capitata, fruit fly parasitoids and codling moth Cydia pomonella rearing facility in North-Eastern Brazil. In: MJB V, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 527–534

    Google Scholar 

  • Marec F, Vreysen MJB (2019) Advances and challenges of using the sterile insect technique for the management of pest lepidoptera. Insects 10:371. https://doi.org/10.3390/insects10110371

    Article  PubMed Central  Google Scholar 

  • Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, Nagaraju J, Franz G (2005) Development of genetic sexing strains in lepidoptera: from traditional to transgenic approaches. J Econ Entomol 98:248–259

    PubMed  Google Scholar 

  • Mastrangelo T, Kovaleski A, Botteon V, Scopel W, Costa MLZ (2018) Optimization of the sterilizing doses and overflooding ratios for the South American fruit fly. PLoS One 13(7):e0201026. https://doi.org/10.1371/journal.pone.0201026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnis DO, Lance DR, Jackson CG (1996) Behavioral resistance to the sterile insect technique by Mediterranean fruit fly (Diptera: Tephritidae) in Hawaii. Ann Entomol Soc Am 89:739–744

    Google Scholar 

  • Meats A, Smallridge CJ (2007) Short- and long-range dispersal of medfly, Ceratitis capitata (Dipt., Tephritidae), and its invasive potential. J Appl Entomol 131:518–523. https://doi.org/10.1111/j.1439-0418.2007.01168.x

    Article  Google Scholar 

  • Méndez Espinoza JA, Estrella Chulím N, Ramírez Juárez J (2006) El programa Moscamed en la región fronteriza México-Guatemala: algunos factores asociados a su evolución y permanencia. Ra Ximhai 435–448. https://doi.org/10.35197/rx.02.02.2006.07.jm

  • Miller RB (2005) Electronic irradiation of foods, an introduction to the technology. Ed. Springer, Albuquerque, New. Mexico. USA

  • Montoya P, Cancino J, Zenil M, Santiago G, Gutiérrez JM (2007) The augmentative biological control component in the Mexican Campaign against Anastrepha spp. fruit flies. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 661–670

    Google Scholar 

  • Montoya P, Flores S, Campos S, Liedo P, Toledo J (2020) Simultaneous use of SIT plus disseminator devices of Beauveria bassiana enhance horizontal transmission in Anastrepha ludens. J Appl Entomol 144:509–518. https://doi.org/10.1111/jen.12766

    Article  CAS  Google Scholar 

  • Mubarqui RL, Perez RC, Kladt RA, Lopez JLZ, Parker A, Seck MT, Sall B, Bouyer J (2014) The smart aerial release machine, a universal system for applying the sterile insect technique. PLoS One 9(7):e103077

    PubMed Central  Google Scholar 

  • Nagel P, Peveling R. (2005) Environment and the sterile insect technique. In: Dyck VA, Hendrichs J and Robinson AS (eds) Sterile Inset Technique. IAEA, Springer, Dordrecht, pp. 499–524

  • Nikolouli K, Sassù F, Mouton L, Stauffer C, Bourtzis K (2020) Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii. J Pest Sci 93:647–661. https://doi.org/10.1007/s10340-020-01199-6

    Article  CAS  Google Scholar 

  • Novelo-Rincón LF, Montoya P, Hernández-Ortiz V, Liedo P, Toledo J (2009) Mating performance of sterile Mexican fruit fly Anastrepha ludens (Diptera: Tephritidae) males treated with Beauveria bassiana (Bals.) Vuill. J Appl Entomol 133:702–710

    Google Scholar 

  • Ochieng’-Odero JPR (1994) Does adaptation occur in insect rearing systems, or is it a case of selection, acclimatization and domestication? Int J Trop Insect Sci 15:1–7. https://doi.org/10.1017/S1742758400016696

    Article  Google Scholar 

  • Orozco-Dávila D, Quintero L, Hernández E, Solís E, Artiaga T, Hernández R, Montoya P (2017) Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico - a review. Entomol Exp Appl 164:176–187. https://doi.org/10.1111/eea.12581

    Article  Google Scholar 

  • Patterson RS, Miller JA (1982) The sterile insect technique in integrated pest management programmes for the control of stable flies and horn flies. In: Proceedings, Symposium: Sterile insect technique and radiation in insect control. Food and Agriculture Organization of the United Nations, and the International Atomic Energy Agency, 29 June–3 July 1981, Neuherberg, Germany. STI/PUB/595. IAEA, Vienna, Austria, pp. 111–122

  • Patterson RS, LaBrecque GC, Williams DF, Weidhaas DE (1981) Control of the stable fly, Stomoxys calcitrans (Diptera: Muscidae), on St. Croix, U.S. Virgin Islands, using integrated pest management measures: III. Field techniques and population control. J Med Entomol 18:203–210. https://doi.org/10.1093/jmedent/18.3.203

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Yuval B, Liedo P, Teal PEA, Shelly TE, McInnis DO, Hendrichs J (2013) Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J Appl Entomol 173(Suppl. 1):178–190. https://doi.org/10.1111/j.1439-0418.2011.01664.x

    Article  Google Scholar 

  • Pérez-Staples D, Shelly T, Yuval B (2013) Female mating failure and the ‘failure’ of mating in sterile insect programs. Entomol Exp Appl 146:66–78

    Google Scholar 

  • Pleydell DRJ, Bouyer J (2019) Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Commun Biol 2:201. https://doi.org/10.1038/s42003-019-0451-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell J (2018) Genetic variation in insect vectors: death of typology? Insects 9:139. https://doi.org/10.3390/insects9040139

    Article  PubMed Central  Google Scholar 

  • Ramírez y Ramírez F, Hernández-Livera RA, Bello-Rivera A (2020) El Programa Nacional de Moscas de la Fruta en Mëxico. In: Montoya P, Toledo J, Hernández E (eds) Moscas de la fruta: Fundamentos y procedimientos para su manejo. S y G editores, Ciudad de México, pp 3–20

    Google Scholar 

  • Rasgado MA, Velázquez-Dávila E, De la Cruz-De La Cruz JA, Aguilar-Laparra R, Silva Villarreal CL, Tejeda MT (2020) A new diet for a new facility development of a starter- finalizer diet system for rearing colonies of the Ceratitis capitata Vienna 8 strain at a new facility of Mexico’s Moscamed Program. In: Pérez-Staples D, Díaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Raton, pp 217–232

    Google Scholar 

  • Reyes J, Carro X, Hernandez J, Méndez W, Campo C, Esquivel H, Salgado E, Enkerlin W (2007) A multi-institutional approach to create fruit fly-low prevalence and fly-free areas in Cenral America. In: MJB V, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. IAEA, Vienna, pp 627–640

    Google Scholar 

  • Rull J, Barreda-Landa A (2007) Colonization of a hybrid strain to restore male Anastrepha ludens (Diptera: Tephritidae) mating competitiveness for sterile insect technique programs. J Econ Entomol 100:752–758

    PubMed  Google Scholar 

  • SADER (2020) Reporta agricultura la erradicación de Colima de la mosca del Mediterráneo; salvaguardada producción y exportación hortofrutícola del país. https://www.gob.mx/agricultura/prensa/reporta-agricultura-la-erradicacion-de-colima-de-la-mosca-del-mediterraneo-salvaguardada-produccion-y-exportacion-hortofruticola-del-pais. Accessed 26 May 2020

  • SAGARPA (2009) Acuerdo mediante el cual se declara erradicado el brote de palomilla del nopal (Cactoblastis cactorum Berg.) en Isla Mujeres, Municipio de Isla Mujeres, Estado de Quintana Roo. Diario Oficial de la Federación, jueves 26 de marzo de 2009. México

  • Salcedo-Baca D, Lomelí-Flores R, Terrazas-González G, Rodríguez-Leyva E (2010) Evaluación económica de la campaña nacional contra moscas de la fruta en los estados de Baja California, Guerrero, Nuevo León, Sinaloa, Sonora y Tamaulipas (1994–2008). IICA, Mexico, p 204

    Google Scholar 

  • Salcedo-Baca D, Lomelí-Flores R, Terrazas-González G, Suárez-Espinoza J, Muñiz-Reyes E, (2013) Evaluación económica del programa moscamed en Guatemala y sus impactos en ese país, México, EE.UU y Belice. SAGARPA-IICA, Mexico, p 188

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  • Sassù F, Nikolouli K, Caravantes S, Taret G, Pereira R, Vreysen MJB, Stauffer C, Cáceres C (2019) Mass-rearing of Drosophila suzukii for sterile insect technique application: evaluation of two oviposition systems. Insects 10:448. https://doi.org/10.3390/insects10120448

    Article  PubMed Central  Google Scholar 

  • Scott MJ, Concha C, Welch JB, Phillips PL, Skoda SR (2017) Review of research advances in the screwworm eradication program over the past 25 years. Entomol Exp Appl 164:226–236. https://doi.org/10.1111/eea.12607

    Article  Google Scholar 

  • SENASA 2020. Mosca de los frutos. http://wwwsenasagobar/cadena-vegetal/frutales/produccion-primaria/programas-fitosanitarios/mosca-de-los-frutos-0 Accesed May 26 2020

  • Shelly TE, Edu J, Pahio E (2007) Age-dependent variation in mating success of sterile male Mediterranean fruit flies (Diptera: Tephritidae): implications for sterile insect technique. J Econ Entomol 100:1180–1187

    PubMed  Google Scholar 

  • Shelly T, Rendon P, Moscoso F, Menendez R, Street A (2010) Testing the efficacy of aromatherapy at the world’s largest eclosion facility for sterile males of the Mediterranean fruit Fly (Diptera: Tephritidae). Proc Hawaiian Entomol Soc 42:33–40

    Google Scholar 

  • Simfruit (2018) SAG implementa plan piloto con innovadora técnica para controlar a la polilla del racimo de la vid en zonas urbanas de la Región de O´Higgins. https://www.simfruit.cl/sag-implementa-plan-piloto-con-innovadora-tecnica-para-controlara-la-polilla-del-racimo-de-la-vid-en-zonas-urbanas-de-la-region-de-ohiggins/ Accessed 17 oct 2020

  • Soberon J, Golubov J, Sarukhán J, Sarukhan J (2001) The importance of Opuntia in Mexico and routes of invasion and impact of Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla Entomol 84:486–492. https://doi.org/10.2307/3496376

    Article  Google Scholar 

  • Suckling DM, Woods B, Mitchell VJ, Twidle A, Lacey I, Jang EB, Wallace AR (2011) Mobile mating disruption of light-brown apple moths using pheromone-treated sterile Mediterranean fruit flies. Pest Manag Sci 67:1004–1014. https://doi.org/10.1002/ps.2150

    Article  CAS  PubMed  Google Scholar 

  • Suckling DM, Conlong DE, Carpenter JE, Bloem KA, Rendon P, Vreysen MJB (2017) Global range expansion of pest Lepidoptera requires socially acceptable solutions. Biol Invasions 19:1107–1119. https://doi.org/10.1007/s10530-016-1325-9

    Article  Google Scholar 

  • Suckling D, Cristofaro M, Roselli G, Levy M, Cemmi A, Mazzoni V, Stringer L, Zeni V, Ioriatti C, Anfora G (2019) The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 10:411. https://doi.org/10.3390/insects10110411

    Article  PubMed Central  Google Scholar 

  • Szyniszewska AM, Tatem AJ (2014) Global assessment of seasonal potential distribution of Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). PLoS One 9(11):e111582. https://doi.org/10.1371/journal.pone.0111582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Carrière Y (2019) Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J Econ Entomol 112:2513–2523. https://doi.org/10.1093/jee/toz173

    Article  CAS  PubMed  Google Scholar 

  • Tan LT, Tan KH (2011) Alternative air vehicles for sterile insect technique aerial release. J Appl Entomol 137(Supp 1):126–141

    Google Scholar 

  • Tanga CM, Khamis FM, Tonnang HEZ, Rwomushana I, Mosomtai G, Mohamed SA, Ekesi S (2018) Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: implications for phytosanitary measures and management. PLoS One 13:e0189138. https://doi.org/10.1371/journal.pone.0189138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejeda MT, Arredondo J, Liedo P, Pérez-Staples D, Ramos-Morales P, Díaz-Fleischer F (2016) Reasons for success: rapid evolution for desiccation resistance and life-history changes in the polyphagous fly Anastrepha ludens. Evolution 70:2583–2594

    PubMed  Google Scholar 

  • Tejeda MT, Arredondo-Gordillo J, Orozco-Dávila D, Quintero-Fong L, Díaz-Fleischer F (2017) Directional selection to improve the sterile insect technique: survival and sexual performance of desiccation resistant Anastrepha ludens strains. Evol Appl 10:1020–1030. https://doi.org/10.1111/eva.12506

    Article  PubMed  PubMed Central  Google Scholar 

  • Toledo J, Campos SE, Flores S, Liedo P, Barrera JF, Villaseñor A, Montoya P (2007) Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae) under laboratory and field cages conditions. J Econ Entomol 100:291–297

    PubMed  Google Scholar 

  • Toledo J, Flores S, Campos S, Villaseñor A, Enkerlin W, Liedo P, Valle A, Montoya P (2017) Pathogenicity of three formulations of Beauveria bassiana and efficacy of autoinoculation devices and sterile fruit fly males for dissemination of conidia for the control of Ceratitis capitata. Entomol Exp Appl 164:340–349

    CAS  Google Scholar 

  • Tween G (2004) Moscamed Guatemala – an evolution of ideas. In: Barnes BN (ed) Proceedings of the 6th International Symposium on Fruit Flies of Economic Importance. Isteg Scientific Publications, Irene, pp 119–126

    Google Scholar 

  • van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–420

    PubMed  Google Scholar 

  • Vargas-Terán M, Hofmann HC, Tweddle NE (2005) Impact of screwworm eradication programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. IAEA, Springer, Dordrecht, pp. 629–650

  • Walder JMM, Morelli R, Costa KZ, Faggioni KM, Sanches PA, Paranhos BAJ, Bento JMS, de Costa MLZ (2014) Large scale artificial rearing of Anastrepha sp.1 aff. fraterculus (Diptera: Tephritidae) in Brazil. Sci Agric (Piracicaba, Braz) 71:281–286. https://doi.org/10.1590/0103-9016-2013-233

    Article  Google Scholar 

  • Weldon CW, Nyamukondiwa C, Karsten M, Chown SL, Terblanche JS (2018) Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Sci Rep 8:9849. https://doi.org/10.1038/s41598-018-28259-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weldon CW, Díaz-Fleischer F, Pérez-Staples D (2020) Desiccation resistance of Tephritid flies: recent research results and future directions. In: Pérez-Staples D, Díaz-Fleischer F, Montoya P, Vera MT (eds) Area-wide management of fruit fly pests. CRC Press, Boca Raton, pp 27–45

    Google Scholar 

  • Willis C (2020) Argentina’s newly recognized fruit fly free areas expedite fresh fruit exports to China https://www.iaea.org/newscenter/news/argentinas-newly-recognized-fruit-fly-free-areas-expedite-fresh-fruit-exports-to-china Accessed 26 May 2020

  • Wyss JH (2006) Screwworm eradication in the Americas. Ann N Y Acad Sci 916:186–193. https://doi.org/10.1111/j.1749-6632.2000.tb05289.x

    Article  Google Scholar 

  • Zavala JL, Arredondo J, Hernández E, Montoya P (2020) Empaque y liberación de moscas estériles, In: Montoya P, Toledo J, Hernández E (eds) Moscas de la fruta: Fundamentos y procedimientos para su manejo. 2nd Ed. S y G editores, Mexico city, pp 499-513

  • Zavala-López JL, Marte-Diaz G, Martínez-Pujol F (2020) Successful area-wide eradication of the Mediterranean fruit fly in the Dominican Republic. In: Hendrichs J, Pereira R, Vreysen MJB (eds) Area-wide integrated pest management: development and field application. CRC Press, Boca Raton, pp 519–538

    Google Scholar 

  • Zepeda C.S., 2010. Desarrollo de cepas de sexado genético. Pp. 333–341. In: Montoya P, Toledo J, Hernández E (eds.), Moscas de la fruta: Fundamentos y procedimientos para su manejo. S y G editores. Mexico D.F

  • Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JRL (2015) Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS One 10:e0121126. https://doi.org/10.1371/journal.pone.0121126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Liang Y, Pan X, Hu L, Sun Q, Wang X, Wei Y, Zhu J, Qian W, Yan Z, Parker AG, Gilles JRL, Bourtzis K, Bouyer J, Tang M, Zheng B, Yu J, Liu J, Zhuang J, Hu Z, Zhang M, Gong J-T, Hong X-Y, Zhang Z, Lin L, Liu Q, Hu Z, Wu Z, Baton LA, Hoffmann AA, Xi Z (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61. https://doi.org/10.1038/s41586-019-1407-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dinesh Rao, Yeudiel Gomez-Simuta, Marco Tulio Tejeda, Gonzalo Ivan López-González, Solana Abraham, Alvaro Garrido Jerez and Charlotte Causton for the useful comments to the manuscript, and Lessando Gontijo for the invitation to write this review.

Author information

Authors and Affiliations

Authors

Contributions

DPS and FDF formulated the concept, and DPS, FDF, and PM performed the literature search and wrote the manuscript.

Corresponding author

Correspondence to D. Pérez-Staples.

Additional information

Edited by Lessando Moreira Gontijo – UFV

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Staples, D., Díaz-Fleischer, F. & Montoya, P. The Sterile Insect Technique: Success and Perspectives in the Neotropics. Neotrop Entomol 50, 172–185 (2021). https://doi.org/10.1007/s13744-020-00817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-020-00817-3

Keywords

Navigation