Skip to main content
Log in

A New Species of Praying Mantis from Peru Reveals Impaling as a Novel Hunting Strategy in Mantodea (Thespidae: Thespini)

  • Systematics, Morphology and Physiology
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

A new species of lichen-mimicking praying mantis, Carrikerella simpira n. sp., is described from Tingo María region in Peru. The new species differs from its congeners in having reduced tergal lobes, a relatively sinuous pronotum, and it is found in the highland tropical rainforest of the Central Andes. Behavioral observations conducted on captive individuals revealed that juveniles and adults hunt by impaling prey using modified foretibial structures. Anatomical examinations of the incumbent trophic structures revealed functional adaptations for prey impaling in the foretibiae, primarily consisting of prominent, forwardly oriented, barbed spines. We provide an overall description of this novel hunting behavior in Mantodea and hypothesize on its evolutionary origin and adaptive significance for the Thespidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  • Agudelo AA, Rafael JA (2014) Genus Mantillica Westwood, 1889: rediscovery and review of the Amazonian “ant-mantis” (Mantodea: Thespidae: Oligonicinae). Entomol Sci 17:400–408

    Google Scholar 

  • Alberch P, GouldS JG, Oster F, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Google Scholar 

  • Battiston R, Puttaswamaiah R, Manjunath N (2018) The fishing mantid: predation on fish as a new adaptive strategy for praying mantids (Insecta: Mantodea). J Orthop Res 27:155–158

    Google Scholar 

  • Beier M (1942) Neue und seltene Mantodeen aus deutschen Museen. Ann Nat Hist Mus Wien 52:126–154

    Google Scholar 

  • Beier M (1964) Blattopteroidea-Mantodea. In: Bronn HG (ed) Klassen und Ordnungen des Tierreichs. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, pp 850–970

    Google Scholar 

  • Brannoch SK, Wieland F, Rivera J, Klass K-D, Béthoux O, Svenson GJ (2017) Manual of praying mantis morphology, nomenclature, and practices (Insecta, Mantodea). Zookeys 696:1–100

    Google Scholar 

  • Corrette BJ (1990) Prey capture in the praying mantis Tenodera aridifolia sinensis: coordination of the capture sequence and strike movements. J Exp Biol 148:147–180

    CAS  PubMed  Google Scholar 

  • Ehrmann R (2002) Gottesanbeterinnen der Welt. Natur und Tier Verlag, Münster, p 519

    Google Scholar 

  • Friedrich F, Matsumura Y, Pohl H, Bai M, Hörnschemeyer T, Beutel RG (2014) Insect morphology in the age of phylogenomics: innovative techniques and its future role in systematics. Entomol Sci 17:1–24

    Google Scholar 

  • Gerson U (1982) Bryophytes and invertebrates. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 291–332

    Google Scholar 

  • Godfray HCJ (2007) Linnaeus in the information age. Nature 446:259–260

    CAS  PubMed  Google Scholar 

  • Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Volumetric additive manufacturing via tomographic reconstruction. Science. https://doi.org/10.1126/science.aau7114

    CAS  PubMed  Google Scholar 

  • Li D, Zhang K, Zhu P, Wu Z, Zhou H (2011) 3D configuration of mandibles and controlling muscles in rove beetles based on micro-CT technique. Anal Bioanal Chem 40:817–825

    Google Scholar 

  • Maldaner C, Agudelo AA, Rafael JA (2015) Rediscovery of Mantellias pubicornis Westwood, 1889, a rare praying mantis from the Amazon (Mantodea, Thespidae, Oligonicinae). Zootaxa 3973:195–199

    PubMed  Google Scholar 

  • Maldonado H, Levin L, Pita JB (1967) Hit distance and the predatory strike of the praying mantis. Z Vgl Physiol 56:237–257

    Google Scholar 

  • McKinney ML, McNamara KJ (2013) Heterochrony: the evolution of ontogeny. Springer Science & Business Media, p 437

  • McNamara KJ (2012) Heterochrony: the evolution of development. Evolution: Educ Outreach 5(2):203–218

    Google Scholar 

  • McNamara KJ, McKinney ML (2005) Heterochrony, disparity, and macroevolution. Paleobiology 31(S2):17–26

    Google Scholar 

  • Murphy EAK, Patek SN (2012) Strike mechanics of an ambush predator: the spearing mantis shrimp. J Exp Biol 215:4374–4384

    PubMed  Google Scholar 

  • Nguyen CV, Lovell DR, Adcock M, La Salle J (2014) Capturing natural-colour 3D models of insects for species discovery and diagnostics. PLoS One 9:1–11

    Google Scholar 

  • Nyffeler M, Maxwell MR, Remsen JV Jr (2017) Bird predation by praying mantises: a global perspective. Wilson J Ornithol 129:331–344

    Google Scholar 

  • Oufiero CE, Nguyen T, Sragner A, Ellis A (2016) Patterns of variation in feeding strike kinematics of juvenile ghost praying mantis (Phyllocrania paradoxa): are components of the strike stereotypic? J Exp Biol:jeb-139675

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Evol Syst 15:523–575

    Google Scholar 

  • Qing X, Bert W (2018) 3D printing in zoological systematics: integrative taxonomy of Labrys chinensis gen. nov., sp. nov. (Nematoda: Tylenchomorpha). J Zoolog Syst Evol Res, 56: 35–47

    Google Scholar 

  • Rehn JA (1935) The Orthoptera of Costa Rica, part I: Mantidae. Proc Acad Nat Sci Philadelphia 87:167–272

    Google Scholar 

  • Rivera J (2010) A historical review of praying mantid taxonomy and systematics in the Neotropical region: state of knowledge and recent advances (Insecta: Mantodea). Zootaxa 2638:44–64

    Google Scholar 

  • Rivera J, Svenson GJ (eds) (2014) A revived focus on the praying mantises (Insecta: Mantodea). Zootaxa 3797:1–273

  • Rivera J, Svenson GJ (2016) The Neotropical ‘polymorphic earless praying mantises’– part I: molecular phylogeny and revised higher-level systematics (Insecta: Mantodea, Acanthopoidea). Syst Entomol 41(3):607–649

    Google Scholar 

  • Rivera J, Vergara-Cobián C (2017) A checklist of the praying mantises of Peru: new records, one new genus (Piscomantis gen. n.) and biogeographic remarks (Insecta, Mantodea). Zootaxa 4337:361–389

    PubMed  Google Scholar 

  • Rivera J, Yagui H, Ehrmann R (2011) Mantids in the mist – taxonomy of the Andean genus Pseudopogonogaster Beier, 1942, a cloud forest specialist, with notes on its biogeography and ecology (Mantodea: Thespidae: Miopteryginae). Insect Syst Evol 42:313–335

    Google Scholar 

  • Rodrigues HR, Rivera J, Reid N, Svenson GJ (2017) An elusive Neotropical giant, Hondurantemna chespiritoi gen. n. & sp. n. (Antemninae, Mantidae): a new lineage of mantises exhibiting an ontogenetic change in cryptic strategy. ZooKeys 680:73–104

  • Roy R (2014) A historical review of nomenclature and high-level classification of praying mantises (Mantodea), including a provisional checklist of the names associated to suprageneric ranks. Zootaxa 3797(1):9–28

    Google Scholar 

  • Salazar-E JA, Gomes-Dias L (2018) Descripción de una nueva especie de mantis-lichen para Colombia: Carrikerella amazonica n. sp. (Mantodea: Thespidae, Oligonychinae). Bol Cient Mus His Nat 22:106–118

    Google Scholar 

  • Santos BF, Scherrer MV, Loss AC (2018) Neither barriers nor refugia explain genetic structure in a major biogeographic break: phylogeography of praying mantises in the Brazilian Atlantic Forest. Mitochondrial DNA Part A:1–9

  • Saussure H, Zehntner L (1894) Familia Mantidae. Biol Cent-Amer 1:123–197

    Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248

    Google Scholar 

  • Scherrer M (2014) A revision of Miobantia Giglio-Tos, 1917 (Mantodea: Thespidae, Miobantiinae), with molecular association of dimorphic sexes and immature stages. Zootaxa 3797:207–268

    Google Scholar 

  • Schwarz CJ, Roy R (2019) The systematics of Mantodea revisited: an updated classification incorporating multiple data sources (Insecta: Dictyoptera). Ann Soc Entomol France (NS) 55(2):101–196

    Google Scholar 

  • Ströbe B, Schmelzle S, Blüthgen N, Heethoff M (2018) An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. ZooKeys 759:1–27

    Google Scholar 

  • Svenson GJ, Whiting MF (2009) Reconstructing the origins of praying mantises (Dictyoptera, Mantodea): the roles of Gondwanan vicariance and morphological convergence. Cladistics 25:468–514

    Google Scholar 

  • Terra PS (1980) Ontogênese da perna raptoria em “louva-a-deus” (Mantodea): um estudo comparativo de alometria. Rev Bras entomol 24:117–122

    Google Scholar 

  • Travassos Filho LP, Urban H (1954) Sobre a criação de pequenos Mantodea com insetos da ordem collembola. Rev Bras entomol 1:159–161

    Google Scholar 

  • Van Der Wal C, Ahyong ST, Ho SY, Lo N (2017) The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data. PeerJ 5:e3844

    Google Scholar 

  • Wieland F (2013) The phylogenetic system of Mantodea (Insecta: Dictyoptera). Species, Phylogeny Evol 3:3–222

    Google Scholar 

  • Wieland F, Svenson GJ (2018) Biodiversity of Mantodea. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society, vol 2. Wiley-Blackwell, New Jersey, pp 389–416

    Google Scholar 

  • Wobber V, Wrangham R, Hare B (2010) Application of the heterochrony framework to the study of behavior and cognition. Commun Integr Biol 3:337–339

    PubMed  PubMed Central  Google Scholar 

  • Wulff NC, Lehmann AW, Hipsley CA, Lehmann GUC (2015) Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures. Arthropod Struct Dev 44:388–397

    PubMed  Google Scholar 

  • Yanoviak SP, Nadkarni NM, Gering JC (2003) Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodivers Conserv 12:731–741

    Google Scholar 

  • Yanoviak SP, Walker H, Nadkarni NM (2004) Arthropod assemblages in vegetative vs. humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia 48:51–58

    Google Scholar 

  • Yanoviak SP, Nadkarni NM, Solano JR (2007) Arthropod assemblages in epiphyte mats of costa rican cloud forests. Biotropica 39:202–210

    Google Scholar 

  • Zimmermann D, Randolf S, Metscher BD, Aspöck U (2011) The function and phylogenetic implications of the tentorium in adult Neuroptera (Insecta). Arthropod Struct Dev 40:571–582

    PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Eduardo Flores, Frank Wieland, and Clorinda Vergara Cobián for their assistance and feedback. We are especially indebted to Michel Barbachán (Facultad de Ciencias de la Comunicación, Universidad de Lima, Perú) for producing and editing video footage, and José María Espinoza (Centro de Aprendizaje Abierto, UNALM) for assisting us with 3D printing procedures. We also thank Jason Weintraub (Academy of Natural Sciences of Drexel University, Philadelphia, USA) and Gavin J. Svenson (Cleveland Museum of Natural History) for enabling the analysis of relevant type specimens. Proyecto 4 VLIR/UOS-UNALM and Unidad de Innovación Educativa-UNALM provided funding support for 3D modeling and printing to YC.

Author information

Authors and Affiliations

Authors

Contributions

JR planned the study, conducted taxonomic procedures, and wrote the manuscript; JR and YC conducted behavioral observations; YC generated images, digital renderings, 3D models, and contributed to writing the manuscript.

Corresponding author

Correspondence to J. Rivera.

Additional information

Edited by RC Castilho – FCAV/UNESP

Nomenclature

ZooBank registration can be found at: http://zoobank.org/urn:lsid:zoobank.org:pub:64D19F6F-DA96-4667-A34C-8C087663DFC6

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(STL 34.3 mb)

ESM 2

(BLEND 1.38 mb)

ESM 3

(STL 4.35 mb)

ESM 4

(BLEND 0.97 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J., Callohuari, Y. A New Species of Praying Mantis from Peru Reveals Impaling as a Novel Hunting Strategy in Mantodea (Thespidae: Thespini). Neotrop Entomol 49, 234–249 (2020). https://doi.org/10.1007/s13744-019-00744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00744-y

Keywords

Navigation