Skip to main content
Log in

Toxin Gene Contents and Activity of Bacillus thuringiensis Strains Against Two Sugarcane Borer Species, Diatraea saccharalis (F.) and D. flavipennella (Box)

  • Biological Control
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL−1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL−1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Abbott WSA (1925) Method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Amadio AF, Navas LE, Sauka DH, Berretta MF, Benintende GB, Zandomeni RO (2013) Identification, cloning and expression of an insecticide cry8 gene from Bacillus thuringiensis INTA Fr7-4. J Mol Microbiol Biotechnol 23:401–409

    Article  CAS  PubMed  Google Scholar 

  • Araújo JR, Botelho PSM, Araújo SMSS, Almeida LC, Degaspari N (1985) Nova dieta artificial para criação da Diatraea saccharalis (Fabr.) Saccharum APC 36:45–48

    Google Scholar 

  • Arrigoni EDB (2002) Broca da cana-de-açúcar—importância econômica e situação atual. In: Arrigoni EDB, Dinardo-Miranda LL, Rosseto R (eds) Pragas da cana-de-açúcar – importância econômica e enfoques atuais. STAB, Piracicaba, pp 1–4

    Google Scholar 

  • Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi O, Amado D, Sousa RS, Segatti F, Fatoretto J, Burd AD, Omoto C (2014) Baseline susceptibility and monitoring of brazilian populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein. J Econ Entomol 107:781–790

    Article  PubMed  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467–472

    Article  CAS  PubMed  Google Scholar 

  • Bohorova N, Maciel AM, Brito RM, Aguilart L, Ibarra JE, Hoisington D (1996) Selection and characterization of Mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pests. Entomophaga 41:153–165

    Article  Google Scholar 

  • Bohorova N, Cabrera M, Abarca C, Quintero R, Maciel AM, Brito RM, Hoisington D, Bravo A (1997) Susceptibility of four tropical lepidopteran maize pests to Bacillus thuringiensis cryI-type insecticidal toxins. J Econ Entomol 90:412–415

    Article  CAS  Google Scholar 

  • Braun S (2000) Production of Bacillus thuringiensis insecticides for experimental uses. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CABI, New York, pp 49–72

    Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M (2013) Evolution of Bacillus thuringiensis cry toxins insecticidal activity. Microb Biotechnol 6:17–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro PRC, Christoffoletti PJ (2005) Fisiologia da Cana-de-Açúcar. In: Mendonça AF (ed) Cigarrinhas da cana-de-açúcar: Controle Biológico. Insecta, Maceió, pp 3–48

    Google Scholar 

  • Crickmore N, Zeigler D, Bravo A, Feitelson J, Schnepf E, Lereclus D, Baum J, Van Rie J, Dean D (2017) Bacillus thuringiensis toxin nomenclature .http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/ accessed 15 Abr 2017

  • Davolos CC, Hernández-Martinez P, Crialesi-Legori PCB, Desidério JA, Ferré J, Escriche B, Lemos MVF (2015) Binding analysis of Bacillus thuringiensis cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). J Invertebr Pathol 127:32–34

    Article  CAS  PubMed  Google Scholar 

  • Dinardo-Miranda LL, dos Anjos IA, da Costa VP, Fracasso JV (2012) Resistance of sugarcane cultivars to Diatraea saccharalis. Pesqui Agropecu Bras 47:1–7

    Article  Google Scholar 

  • EMBRAPA (2015) Cana-de-açúcar. http://wwwagenciacnptiaembrapabr/gestor/cana-de-acucar/Aberturahtml Accessed 15 Jan 2015

  • Endo H, Tanaka S, Imamura K, Adegawa S, Kikuta S, Sato R (2017) Cry toxin specificities of insect ABCC transporters closely related to lepidopteran ABCC2 transporters. Peptides. https://doi.org/10.1016/j.Peptides.2017.04.003

  • FAOSTAT (2015) Sugarcane production. http://faostat3faoorg/browse/Q/QC/E Accessed 18 Mar 2015

  • Finney DJ (1971) Probit Analysis. Cambridge University, London, p 333

    Google Scholar 

  • Freitas MDRT, Fonseca APP, Silva EL, Mendonça AL, Silva CE, Mendonça AL, Nascimento RR, Sant’ana AEG (2006) The predominance of Diatraea flavipennella (Lepidoptera: Crambidae) in sugar cane fields in the state of Alagoas, Brazil. Fla Entomol 89:539–540

    Article  Google Scholar 

  • Ghimire MN, Huang F, Leonard R, Head GP, Yang Y (2011) Susceptibility of cry1Ab-susceptible and -resistant sugarcane borer to transgenic corn plants containing single or pyramided Bacillus thuringiensis genes. Crop Prot 30:74–81

    Article  CAS  Google Scholar 

  • Girón-Pérez K, Oliveira AL, Teixeira AF, Guedes RNC, Pereira EJ (2014) Susceptibility of Brazilian populations of Diatraea saccharalis to cry1Ab and response to selection for resistance. Crop Prot 62:124–128

    Article  Google Scholar 

  • Gitahy PM, Galvao PG, Araujo JLS, Baldani JI (2006) Perspectivas biotecnológicas de Bacillus thuringiensis no controle biológico da broca da cana-de açúcar Diatraea saccharalis http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/33986/1/doc214.pdf

  • Gitahy PDM, Souza MTD, Monnerat RG, Arrigoni EDB, Baldani JI (2007) A Brazilian Bacillus thuringiensis strain highly active to sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). Braz J Microbiol 38:531–537

    Article  Google Scholar 

  • Hall DG, Bennett FD (1994) Biological control and IPM of sugarcane pests in Florida. In: Rosen D, Capinera JL, Bennett FD (eds) Pest management in the subtropics: biological control—a Florida perspective. Intercept, Andover, pp 297–325

    Google Scholar 

  • Hensley SD, Hammond AM (1968) Laboratory techniques for rearing the sugarcane borer on an artificial diet. J Econ Entomol 61:1742–1743

    Article  Google Scholar 

  • Jiang J, Huang Y, Shu C, Soberón M, Bravo A, Liu C, Song F, Lai J, Zhang J (2017) Identification of Holotrichia oblita midgut proteins that bind to cry8-like toxin from Bacillus thuringiensis and assembling of H. oblita midgut tissue transcriptome. Appl environ Microbiol. https://doi.org/10.1128/AEM.00541-17

  • Kumar K, Yashaswini KS, Earanna N (2013) Molecular characterization of lepidopteran specific Bacillus thuringiensis strains isolated from hilly zone soils of Karnataka, India. Afr J Biotechnol 12:2924–2931

    CAS  Google Scholar 

  • Lemes ARN, Figueiredo CS, Sebastião I, Marques Silva L, Alves RC, Siqueira HAA, Lemos MVF, Fernandes OA, Desidério JA (2017) Cry1Ac and vip3Aa proteins from Bacillus thuringiensis targeting cry toxin resistance in Diatraea flavipennella and Elasmopalpus lignosellus from sugarcane. PeerJ 5:e2866

    Article  PubMed  PubMed Central  Google Scholar 

  • LeOra Software (2005) POLO-Plus, POLO for Windows computer program, version 2.0. LeOra-Software, Petaluma, CA. computer program, version By LeOra Software

  • MAPA Ministério da Agricultura, Pecuária e Abastecimento (2017) AGROFIT: Sistema de Agrotóxicos Fitossanitários. MAPA/CGAF/DFIA/DAS, Brasília

  • Marçon PCRG, Young LJ, Steffey KL, Siegfried BD (1999) Baseline susceptibility of european corn borer (Lepidoptera: Crambidae) to Bacillus thuringiensis toxins. J Econ Entomol 92:279–285

    Article  Google Scholar 

  • Marques EJ, Lima ROR, Oliveira JVD (2009) Pragas da Cana-de-açúcar: nordeste do Brasil. EDUFRPE, Recife, p 54

    Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto AS, Parra JRP, Oliveira HN, Arrigoni EDB (2003) Comparação de técnicas de liberação de Trichogramma galloi zucchi (Hymenoptera: Trichogrammatidae) para o controle de Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). Neotrop Entomol 32:311–318

    Article  Google Scholar 

  • Polanczyk RA, Alves SB (2005) Biological parameters of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) assayed with Bacillus thuringiensis berliner. Sci Agric 62:464–468

    Article  Google Scholar 

  • Porcar M, Juárez-Pérez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  PubMed  Google Scholar 

  • Robertson JL, Russell RM, Preisler HK, Savin NE (2007) Bioassays with arthropods. CRC Press Taylor & Francis Group, Boca Raton, p 200

    Google Scholar 

  • Rosas-García N, Pereyra-Alferez B, Niño K, Gal’n-Wong L, Morales-Ramos L (2004) Novel toxicity of native and HD Bacillus thuringiensis strains against to the sugarcane borer Diatraea saccharalis. BioControl 49:455–465

    Article  Google Scholar 

  • Saker M, Salama HS, Ragaei M, Abd El-Ghany NM (2012) Molecular characterisation of Bacillus thuringiensis isolates from the Egyptian soils. Arch Phytopathol Plant Protect 45:110–125

    Article  CAS  Google Scholar 

  • Salles JF, Baldani JI (1998) Bacillus thuringiensis como agente de controle biológico, doc 54. Embrapa - CNP Agrobiologia, Seropédica, p 31

    Google Scholar 

  • SAS Institute Inc. (1999) STAT User’s guide computer program, version 8.0. By SAS Institute Inc., Cary

  • Silva CCM (2013) Associação de Cotesia flavipes (Cam.) com Metarhizium anisopliae (Metsch.) Sorok. e Beauveria bassiana (Bals.) Vuill no controle de broca da cana-de-açúcar Diatraea flavipennella (Box) (Lepidoptera: Crambidae), PhD. Thesis, Universidade Federal Rural de Pernambuco, Recife, p 51

  • Silva FAS (2016) ASSISTAT: version 7.7 beta. DEAG-CTRN-UFCG. Available in <http://www.assistat.com/>

  • Silva MC, Siqueira HAA, Marques EJ, Silva LM, Barros R, Lima Filho JVM, Silva SMFA (2012) Bacillus thuringiensis isolates from northeastern Brazil and their activities against Plutella xylostella (Lepidoptera: Plutellidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Biocontrol Sci Tech 22:583–599

    Article  Google Scholar 

  • Silva MC, Siqueira HAA, Silva LM, Marques EJ, Barros R (2015) Cry proteins from Bacillus thuringiensis active against diamondback moth and fall armyworm. Neotrop Entomol 44:392–401

    Article  CAS  PubMed  Google Scholar 

  • Tan SY, Cayabyab BF, Alcantara EP, Ibrahim YB, Huang F, Blankenship EE, Siegfried BD (2011) Comparative susceptibility of Ostrinia furnacalis, Ostrinia nubilalis and Diatraea saccharalis (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1 toxins. Crop Prot 30:1184–1189

    Article  CAS  Google Scholar 

  • Tan SY, Cayabyab BF, Alcantara EP, Huang F, He K, Nickerson KW, Siegfried BD (2013) Comparative binding of Cry1Ab and Cry1F Bacillus thuringiensis toxins to brush border membrane proteins from Ostrinia nubilalis, Ostrinia furnacalis and Diatraea saccharalis (Lepidoptera: Crambidae) midgut tissue. J Invertebr Pathol 114:234–240

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes JL, Yoshizawa Y, Endo H, Sato R (2013) The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for cry toxins from Bacillus thuringiensis. FEBS J 280:1782–1794

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vacari AM, De Bortoli SA, Borba DF, Martins MIEG (2012) Quality of Cotesia flavipes (hymenoptera: Braconidae) reared at different host densities and the estimated cost of its commercial production. Biol Control 63:102–106

    Article  Google Scholar 

  • van Frankenhuyzen K, Nystrom C (2002) The Bacillus thuringiensis toxin specificity database. http://wwwglfccfsnrcangcca/bacillus Accessed 15 Jun 2015

  • Viana CLTP, Bortoli SA, Thuler RT, Goulart RM, Thuller AMG, Lemos MVF, Ferraudo AS (2009) Efeito de novos isolados de Bacillus thuringiensis Berliner em Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Cientifica 37:22–31

    Google Scholar 

  • Vilas Boas AM (1992) Resultados preliminares da captura de adultos de Diatraea spp. em armadilhas de feromônios com fêmeas virgens em Pernambuco. Caderno ômega - Série agronomia 5:37–46

    Google Scholar 

  • Wang J, Boets A, Van Rie J, Ren G (2003) Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J Invertebr Pathol 82:63–71

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse MEA, Wilson LJ, Davies AP, Cross D, Goldsmith P, Thompson A, Harden S, Baker G (2014) Target and non-target effects of novel “triple-stacked” Bt-transgenic cotton 1: canopy arthropod communities. Environ Entomol 43:218–241

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Rogers Leonard B, Zhu YC, Abel CA, Head GP, Huang F (2009) Susceptibility of cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. J Invertebr Pathol 100:29–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Huang F, Rogers Leonard B, Chen M, Clark T, Zhu YC, Wangila DS, Yang F, Niu Y (2013a) Susceptibility of cry1Ab maize-resistant and -susceptible strains of sugarcane borer (Lepidoptera: Crambidae) to four individual cry proteins. J Invertebr Pathol 112:267–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zheng G, Tan J, Li C, Cheng L (2013b) Cloning and characterization of a novel cry8Ab1 gene from Bacillus thuringiensis strain B-JJX with specific toxicity to scarabaeid (Coleoptera: Scarabaeidae) larvae. Microbiol Res 168:512–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to CNPq (Brazilian National Council for Research) for providing the studentship to the first author. To FIOCRUZ/RJ for kindly providing the standards of Bt used in the experiments and PROAP/CAPES program for financially supporting part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Silva.

Additional information

Edited by Marcos R Faria – Embrapa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.M., Silva, M.C., Silva, S.M.F.A. et al. Toxin Gene Contents and Activity of Bacillus thuringiensis Strains Against Two Sugarcane Borer Species, Diatraea saccharalis (F.) and D. flavipennella (Box). Neotrop Entomol 47, 292–301 (2018). https://doi.org/10.1007/s13744-017-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-017-0558-3

Keywords

Navigation