Skip to main content
Log in

Effect of copper doping in the TiO2 film electrodes on the performance of photoelectrochemical biofuel cells

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Cu-doped TiO2 film electrodes are synthesized via sol–gel technique and physically characterized. The Cu-doped TiO2 film electrodes is sensitized by tetrakis (4-carboxyphenyl) porphyrin and applied as a photoanode of a photoelectrochemical biofuel cell (PEBFC). The Cu/TiO2-based PEBFCs show a short-circuit current (Isc) of 75.9 μA, an open-circuit potential (Voc) of 912 mV, a maximum power density (Pmax) of 66.43 μW/cm2 and an overall energy conversion efficiency (η) of 2.16%, respectively. The PEBFCs indicate improved photoelectric performances comparing the TiO2-based PEBFC (Isc: 72.5 μA, Voc: 740 mV, Pmax: 35.34 μW/cm2, η: 1.52%). The Cu/TiO2-based PEBFCs also indicate a higher incident photon-to-collected electron conversion efficiency (IPCE), which is probably due that the doped copper reduces the band gap of a wide-gap TiO2 semiconductor as shown by ab initio band calculation. And the Cu/TiO2-based PEBFC can provide long electron lifetime and decrease electron–hole pair recombination rate, which is responsible for the better performance in the Cu/TiO2-based PEBFC than in the TiO2-based PEBFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.H. He, X.L. Ma, Y.B. Li, C.L. Gong, H. Liu, H.H. Shu, J. Ni, B.Q. Zhang, S.C. Xiao, J. Alloys Compd. 907, 164132 (2022)

    Article  CAS  Google Scholar 

  2. Y. Wang, M. Kazemi, S. Nojavan, K. Jermsittiparsert, Int. J. Hydrogen Energy 45, 18995 (2020)

    Article  CAS  Google Scholar 

  3. V.T. Tran, M.R. Islam, K.M. Muttaqi, D. Sutanto, IEEE Trans. Ind. Appl. 55, 6517 (2019)

    Article  Google Scholar 

  4. S. Wang, W.S. Yu, S.Y. Xu, K.H. Han, F.G. Wang, ACS Sustain. Chem. Eng. 10, 115 (2022)

    Article  CAS  Google Scholar 

  5. P. Nunes, R. Figueiredo, M.C. Brito, Renew. Sustain. Energy Rev. 66, 679 (2016)

    Article  Google Scholar 

  6. C. Chen, Y. Kuang, L. Hu, Joule 3, 683 (2019)

    Article  CAS  Google Scholar 

  7. P. Cheng, H. Wang, B. Müller, J. Müller, D. Wang, P. Schaaf, A.C.S. Appl, Mater. Interfaces 13, 1818 (2021)

    Article  CAS  Google Scholar 

  8. Q. Gao, L.L. Ji, J. Yang, Indian J. Phys. 96, 1293 (2022)

    Article  CAS  Google Scholar 

  9. C.P. Xiao, L.L. Ji, D.H. Li, L.Q. Wang, J. Yang, J. Chem. Res. 45, 374 (2021)

    Article  CAS  Google Scholar 

  10. M. Hambourger, A. Brune, D. Gust, A.L. Moore, T.A. Moore, Photochem. Photobiol. 81, 1015 (2005)

    CAS  PubMed  Google Scholar 

  11. M. Hambourger, P.A. Liddell, D. Gust, A.L. Moore, T.A. Moore, Photochem. Photobiol. Sci. 6, 431 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. M. Hambourger, M. Gervaldo, D. Svedruzic, P.W. King, D. Gust, M. Ghirardi, A.L. Moore, T.A. Moore, J. Am. Chem. Soc. 130, 2015 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. M. Hambourger, G. Kodis, M.D. Vaughn, G.F. Moore, D. Gust, A.L. Moore, T.A. Moore, Dalton Trans. 45, 9979 (2009)

    Article  Google Scholar 

  14. T. Raguram, K.S. Rajni, Mater. Today: SAVE Proc. 33, 2110 (2020)

    CAS  Google Scholar 

  15. J. Zhang, W.Q. Peng, Z.H. Chen, H. Chen, L.Y. Han, J. Phys. Chem. C 116, 19182 (2012)

    Article  CAS  Google Scholar 

  16. X.D. Zhu, G.L. Wen, H. Liu, S.H. Han, S.H. Chen, Q.Q. Kong, W. Feng, J. Mater. Sci. Mater. Electron. 30, 13826 (2019)

    Article  CAS  Google Scholar 

  17. D. Dahyunir, S.S.K. Md, B.A. Usra, B. Abdil, U.A. Ali, Phys. E 91, 185 (2017)

    Article  Google Scholar 

  18. X. Zhang, F. Liu, Q.L. Huang, G. Zhou, Z.S. Wang, J. Phys. Chem. C 115, 12665 (2011)

    Article  CAS  Google Scholar 

  19. Z.F. Tong, Ta. Peng, W.W. Sun, W. Liu, S.S. Guo, X.Z. Zhao, Phys. Chem. C 118, 16892 (2014)

    Article  CAS  Google Scholar 

  20. M. Ikram, E. Umar, A. Raza, A. Haider, S. Naz, A. Ul-Hamid, J. Haider, I. Shahzadi, J. Hassanc, S. Alic, RSC Adv. 10, 24215 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Raguram, K.S. Rajni, Int. J. Hydrogen Energ. 47, 4674 (2022)

    Article  CAS  Google Scholar 

  22. J. Yang, L.G. Feng, F.Z. Si, Y.W. Zhang, C.P. Liu, W. Xing, K.Q. Wang, J. Power. Sour. 222, 344 (2013)

    Article  CAS  Google Scholar 

  23. J. Yang, K.Q. Wang, L. Liang, L.G. Feng, B. Sun, W. Xing, Catal. Commun. 20, 76 (2012)

    Article  CAS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

    Article  CAS  Google Scholar 

  26. C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58, 3641 (1998)

    Article  CAS  Google Scholar 

  27. J. Cheng, M. Sprik, J. Chem, Theory Comput. 6, 880 (2010)

    Article  CAS  Google Scholar 

  28. J. Cheng, M. Sulpizi, J. Vandevondele, M. Sprik, Chem. Cat. Chem. 4, 636 (2012)

    CAS  Google Scholar 

  29. Y. Luan, P.F. Fu, X.G. Dai, Surface Rev. Lett. 13, 429 (2006)

    Article  CAS  Google Scholar 

  30. H.H. Dabaghi, M. Kazemzad, Y. Ganjkhanlou, R. Eskandari, Surface Rev. Lett. 20, 135 (2013)

    Article  Google Scholar 

  31. B. Ünlüa, M.T. Özacar, Sol. Energy 196, 448 (2020)

    Article  Google Scholar 

  32. L. Kundakovic, M.F. Stephanopoulos, Appl. Catal. A 171, 13 (1998)

    Article  CAS  Google Scholar 

  33. M.P. Balanaya, C.V.P. Dipalinga, S.H. Lee, D.H. Kima, K.H. Lee, Sol. Energy Mater. Sol. Cells 91, 1775 (2007)

    Article  Google Scholar 

  34. A.B. Walker, L.M. Peter, K. Lobato, P.J. Cameron, J. Phys. Chem. B 110, 25504 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 1035 (2007)

    Article  CAS  Google Scholar 

  36. M.S. Abusaif, M.A. Abu-Saied, M. Fathy, A.A. El-Sherif, A.B. Kashyout, M.R. Selim, Y.A. Ammar, J. Iran. Chem. Soc. 18, 949 (2021)

    Article  CAS  Google Scholar 

  37. Z. Khakpour, M. Tavassoli, O. Moradlou, J. Iran. Chem. Soc. 17, 881 (2020)

    Article  CAS  Google Scholar 

  38. S. Çakar, N. Güy, M. Özacar, F. Fındık, Electrochim. Acta 20, 407 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Health Commission of Jilin Province (2022JC037). This work was supported by Innovation and Entrepreneurship Training Program for College Students in 2022 (202210199030) and in 2023 (88).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanping Miao or Jing Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zheng, H., Zhang, F. et al. Effect of copper doping in the TiO2 film electrodes on the performance of photoelectrochemical biofuel cells. J IRAN CHEM SOC 21, 1021–1030 (2024). https://doi.org/10.1007/s13738-024-02972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02972-5

Keywords

Navigation