Skip to main content

Advertisement

Log in

A review on recent advances of iron-based macrocyclic complexes as prominent candidate for several potential applications

  • Review Papers
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The scope of possible applications such as catalysis, bioinorganic, medical region, coordination chemistry, bio-mimetic, etc., is the main driving force for the expansion of macrocyclic and supramolecular chemistry as the demand for novel and superior complexes increased day by day for evident advanced applications. Herein this review article, we tried to succinct the chemistry of iron-based macrocyclic complexes published during the 2015–2023 period with their potent applications. Macrocycles with benign presence of first-row transition metals have gained more focus because of gigantic potent biological applications, namely, antimicrobial, anti-biofilm, anti-inflammatory, antibacterial, antifungal, antiviral, anti-carcinogenic, antifertility, antioxidant, magnetic resonance imaging contrast agents, anti-HIV activities, and many more. Broadly, these biological activities are influenced by metal ion’s chemical properties such as chelation, solubility, dipole moment, and conductivity and by the formation of their macrocyclic compounds. Iron-based macrocycles are involved in various biological functions such as metabolism, respiration, DNA synthesis, catalytic oxidation, etc., which are a few of them, so in this concise review, we presented the recent advancement of iron-based macrocycles complexes in a summarized systematic way, with synthetic routes, structural elucidation, catalytic performance, and their role as biologically active core for copious activities. We hope that it will be fruitful for young researchers working in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Scheme 5
Scheme 6
Scheme 7
Fig. 4
Scheme 8
Scheme 9
Fig. 5
Scheme 10
Scheme 11
Fig. 6
Fig. 7
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Fig. 8
Scheme 21
Scheme 22
Scheme 23

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

Al:

Aluminum

AIDS:

Acquired immune deficiency syndrome

A. niger :

Aspergillus niger

A. alternata :

Alternaria alternata

B. cereus :

Bacillus cereus

BM:

Bohr magneton

B. subtilis :

Bacillus subtilis

B. stearothermophilus :

Bacillus stearothermophilus

[Bu4N] [BF4]:

Tetrabutylammonium tetrafluoroborate

Ca:

Calcium

CAs:

Contrast agents

C. albican :

Candida albican

CH3OH:

Methanol

Co:

Cobalt

Cr:

Chromium

Cu:

Copper

CV:

Cyclic voltammetry

DAT:

Diaminotoluene

DBM:

Dibenzoyl methane

DMF:

Dimethylfuran

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

DTA:

Differential thermal analysis

E. coli :

Escherichia coli

ESI–MS:

Electrospray ionization–mass spectrometry

ESR:

Electron spin resonance

EWG:

Electron-withdrawing group

Fe:

Iron

F. oxysporum :

Fusarium oxysporum

FT-IR:

Fourier transform infrared spectroscopy

GBCA:

Gadolinium-based contrast agent

Gd:

Gadolinium

GDD:

Gadolinium deposition disease

GPX4:

Glutathione peroxidase

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

H2Q:

Hydroquinone

IBCA:

Iron-based contrast agents

L. infantum :

Leishmania infantum

MIC:

Minimal inhibitory concentration

Mg:

Magnesium

MMCs:

Metal macrocyclic complexes

Mn:

Manganese

Mo:

Molybdenum

MRI:

Magnetic resonance imaging

MSN:

Macromolecular, supramolecular, and nanochemistry

Ni:

Nickel

NMR:

Nuclear magnetic resonance

NPs:

Nanoparticles

NrF2 :

Nuclear factor erythriod-2-related factor 2

OEP:

Octaethyl porphyrin

ORR:

Oxygen reduction reaction

P. aeruginosa :

Pseudomonas aeruginosa

P. funiculosum :

Penicillium funiculosum

P. putida :

Pseudomonas putida

PH :

Potential of hydrogen

PTT:

Polytrimethylene terephthalate

ROS:

Reactive oxygen species

S. aureus :

Staphylococcus aureus

S. cerevisiae :

Saccharomyces cerevisiae

S. griseus :

Streptomyces griseus

S. typhi :

Salmonella typhi

SDA:

Sabouraud dextrose agar

TACN:

Triazacyclononane

t-CDTA:

Trans-cyclohexane diamine tetra-acetic acid

TEAP:

Tetra-ethyl-ammonium-perchlorate

TGA:

Thermogravimetric analysis

TMB:

3,3,5,5-Teramethyl benzidine

T. reesei :

Trichoderma reesei

UV:

Ultraviolet

XAS:

X-ray absorption spectroscopy

XPS:

X-ray photoelectron spectroscopy

Zn:

Zinc

References

  1. J. Vanco, J. Marek, Z. Trávnícek, E. Racanská, J. Muselík, O. Svajlenová, J. Inorg. Chem. 102, 595 (2008). https://doi.org/10.1016/j.jinorgbio.10.003

    Article  CAS  Google Scholar 

  2. D.P. Singh, K. Kumar, R.M. Chopra, Spectrochim. Acta A Mol. Biomol. Spectrosc 78(2), 629 (2011). https://doi.org/10.1016/j.saa.2010.11.037

    Article  CAS  PubMed  ADS  Google Scholar 

  3. S. Verma, S. Chandra, U. Dev, N. Joshi, Spectrochim. Acta A 74, 370 (2009). https://doi.org/10.1016/j.saa.2009.06.029

    Article  CAS  ADS  Google Scholar 

  4. T.A. Khan, S. Tabassum, Y. Azim, M. Shakir, Synth. React. Inorg. Met. Org. Chem. 34, 1305 (2004). https://doi.org/10.1081/SIM-200026200

    Article  CAS  Google Scholar 

  5. S.K. Gupta, Y.S. Kushwah, Polyhedron 20, 2019 (2001). https://doi.org/10.1016/S0277-5387(01)00786-0

    Article  CAS  Google Scholar 

  6. M. Qian, S.H. Gou, H.X. Ju, W. Huang, C.Y. Duan, X.Z. You, Transit. Met. Chem. 25, 584 (2000)

    Article  CAS  Google Scholar 

  7. C.J. Pedersen, J. Am. Chem. Soc. 89, 7017 (1967)

    Article  CAS  Google Scholar 

  8. E.C. Constable, (Weinheim1996) ISBN 3-527–29278–0 (HARDCOVER), ISBN 3-527-29277-2 (SOFTCOVER), DM128 (HARDCOVER), DM68 (SOFTCOVER).

  9. J.R. Fredericks, A.D. Hamilton, A.D. Hamilton (eds.), Supramolecular Control of Structure and Reactivity (Wiley, Chichester, 1996). (Chapter 1)

    Google Scholar 

  10. J.W. Steed, J.L. Atwood, Supramolecular Chemistry, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  11. K.Y. Choi, K.M. Chun, I.H. Suh, Polyhedron 20(1–2), 57 (2021). https://doi.org/10.1016/S0277-5387(00)00593-3

    Article  Google Scholar 

  12. E.Q. Gao, H.Y. Sun, D.Z. Liao, Z.H. Jiang, S.P. Yan, Polyhedron 21(4), 359 (2002). https://doi.org/10.1016/S0277-5387(01)01002-6

    Article  CAS  Google Scholar 

  13. A. Baysal, M. Aydemir, F. Durap, B. Gumgum, S. Ozkar, L. Yildirim, Polyhedron 26, 3373 (2007)

    Article  CAS  Google Scholar 

  14. S.M. Kasim, F.Y. Al-bazzaz, S.H. Hammoodi, A.F. Mustafa, Eurasian Chem. Commun 5, 522 (2023). https://doi.org/10.22034/ecc.2023.379484.1587

    Article  CAS  Google Scholar 

  15. I. Kostova, Inorganics 11, 56 (2023). https://doi.org/10.3390/inorganics11020056

    Article  CAS  Google Scholar 

  16. A. Frei, A.D. Verderosa, A.G. Elliott, J. Zuegg, M.A. Blaskovich, Nat. Rev. Chem. 7(3), 202–224 (2023). https://doi.org/10.1038/s41570-023-00463-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V.K. Singh, V.K. Singh, A. Mishra, A.A. Singh, G. Prasad, A.K. Singh, Polyhedron 241, 116485 (2023). https://doi.org/10.1016/j.poly.2023.116485

    Article  CAS  Google Scholar 

  18. L. Todorov, I. Kostova, Molecules 28(4), 1959 (2023). https://doi.org/10.3390/molecules28041959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Li, L. Guo, H. Huo, Transit. Met. Chem. (2023). https://doi.org/10.1007/s11243-023-00527-w

    Article  Google Scholar 

  20. R. Kanaoujiya, D.K. Sahu, V. Shankar, S. Srivastava, Mater. Today Proc. 62, 3497 (2022). https://doi.org/10.1016/j.matpr.2022.04.303

    Article  CAS  Google Scholar 

  21. O. Krasnovskaya, A. Naumov, D. Guk, P. Gorelkin, A. Erofeev, E. Beloglazkina, A. Majouga, Inter. J. Mol. Sci. 21(11), 3965 (2020). https://doi.org/10.3390/ijms21113965

    Article  CAS  Google Scholar 

  22. S. Bugalia, Y. Dhayal, H. Sachdeva, S. Kumari, K. Atal, U. Phageria, O.P. Gurjar, J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02666-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. H.S. Mohammed, V.D. Tripathi, J. Phys. Conf. Ser. 1664, 012070 (2020). https://doi.org/10.1088/1742-6596/1664/1/012070

    Article  CAS  Google Scholar 

  24. M.I. Din, F. Ali, A. Intisar, Rev. Roum. Chim. 64(1), 5–17 (2019). https://doi.org/10.33224/rrch.2019.64.1.01

    Article  Google Scholar 

  25. R. Kanaoujiya, D. Singh, T. Minocha, S.K. Yadav, S. Srivastava, Mater. Today Proc. 65, 3143 (2022). https://doi.org/10.1016/j.matpr.2022.05.354

    Article  CAS  Google Scholar 

  26. A. Soroceanu, A. Bargan, Crystals 12(10), 1436 (2022). https://doi.org/10.3390/cryst12101436

    Article  CAS  Google Scholar 

  27. R. Kanaoujiya, S. Srivastava, R. Singh, Meenakshi, G. Mustafa, Mater. Today Proc. 72(6), 2822 (2023). https://doi.org/10.1016/j.matpr.2022.07.098

    Article  CAS  Google Scholar 

  28. F. Lee, Z.P. Benjamin, S.N. Maloof, X. Wang, S.L. Schreiber, Bioorg. Med. Chem. Lett. 19(22), 6319 (2009). https://doi.org/10.1016/j.bmcl.2009.09.089

    Article  CAS  Google Scholar 

  29. Y. Ding, W.H. Zhu, Y. Xie, Chem. Rev. 117, 2203 (2017). https://doi.org/10.1021/acs.chemrev.6b00021

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhou, K. Jie, R. Zhao, F. Huang, Adv. Mater. 32, 1904824 (2020). https://doi.org/10.1002/adma.201904824

    Article  CAS  Google Scholar 

  31. S.N. Lei, H. Xiao, Y. Zeng, C.H. Tung, L.Z. Wu, H. Cong, Angew. Chem. Int. Ed. 59, 10059 (2020). https://doi.org/10.1002/anie.201913340

    Article  CAS  Google Scholar 

  32. M.J. Webber, R. Langer, Chem. Soc. Rev. 46, 6600 (2017). https://doi.org/10.1039/C7CS00391A

    Article  CAS  PubMed  Google Scholar 

  33. N. Pairault, H. Zhu, D. Jansen, A. Huber, C.G. Daniliuc, S. Grimme, Angew. Chem. Int. Ed. 59, 5102 (2020). https://doi.org/10.1002/anie.201913781

    Article  CAS  Google Scholar 

  34. B. Lewandowski, G.B. De, J.W. Ward, M. Papmeyer, S.J. Kuschel, Aldegunde, Science 339, 189 (2013). https://doi.org/10.1126/science.1229753

    Article  CAS  PubMed  ADS  Google Scholar 

  35. P.L. Cheung, S.K. Lee, C.P. Kubiak, Chem. Mater. 31, 1908 (2019). https://doi.org/10.1021/acs.chemmater.8b04370

    Article  CAS  Google Scholar 

  36. A.M. Shultz, O.K. Farha, J.T. Hupp, S.T. Nguyen, J. Am. Chem. Soc. 131, 4204 (2009). https://doi.org/10.1021/ja900203f

    Article  CAS  PubMed  Google Scholar 

  37. D. Kumar, N. Sharma, M. Nair, J. Biol. Inorg. Chem. 22, 535 (2017). https://doi.org/10.1007/s00775-017-1440-9

    Article  CAS  PubMed  Google Scholar 

  38. D. Dai, J. Yang, Y.W. Yang, Chem. Eur. J. (2022). https://doi.org/10.1002/chem.202103185

    Article  PubMed  Google Scholar 

  39. Z. Li, Y.W. Yang, Adv. Mater. (2022). https://doi.org/10.1002/adma.202107401

    Article  PubMed  PubMed Central  Google Scholar 

  40. H. Liu, J. Yang, X. Yan, C. Li, M. Elsabahy, L. Chen, Y.W. Yang, H. Gao, J. Mater. Chem. B9, 9594 (2021). https://doi.org/10.1039/d1tb02134f

    Article  CAS  Google Scholar 

  41. J. Yang, D. Dai, Z. Cai, Y.Q. Liu, J.C. Qin, Y. Wang, Y.W. Yang, Acta Biomater. 134, 664 (2021). https://doi.org/10.1016/j.actbio.2021.07.050

    Article  CAS  PubMed  Google Scholar 

  42. M.R. Kamroudi, G. Grivani, J. Chem. Sci. 135, 11 (2023). https://doi.org/10.1007/s12039-023-02133-w

    Article  CAS  Google Scholar 

  43. M. Barwiolek, D. Jankowska, A. Kaczmarek-Kedziera, I. Lakomska, J. Kobylarczyk, R. Podgajny, P. Popielarski, J. Masternak, M. Witwicki, Muzioł, Int. J. Mol. Sci. 24, 3017 (2023). https://doi.org/10.3390/ijms24033017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. N.E. Borisova, M.D. Reshetova, Y.A. Ustynyuk, Chem. Rev. 107(1), 46 (2017). https://doi.org/10.1021/cr0683616

    Article  CAS  Google Scholar 

  45. S. Chandra, R. Gupta, N. Gupta, Transit. Met. Chem. 31, 147 (2006). https://doi.org/10.1007/s11243-005-6194-5

    Article  CAS  Google Scholar 

  46. S. Chandra, A. Gautam, M. Tyagi, Transit. Met. Chem. 32, 1079 (2007). https://doi.org/10.1007/s11243-007-0289-0

    Article  CAS  Google Scholar 

  47. S. Chandra, L.K. Gupta, S. Agrawal, Transit. Met. Chem. 32, 558 (2007). https://doi.org/10.1007/s11243-007-0201-y

    Article  CAS  Google Scholar 

  48. M. Tadokoro, H. Sakiyama, N. Matsumoto, M. Kodera, H. Ōkawa, S. Kida, J. Chem. Soc. Dalton Trans. 313–317 (1992). https://doi.org/10.1039/DT9920000313

  49. A.W. Herliger, E.W. Funk, R.F. Charak, J.W. Siebert, E. Roce, Polyhedron 69, 13 (1999)

    Google Scholar 

  50. D.K. Dey, D. Bandyopadhya, K. Nandi, S.N. Paddan, G. Mukhapadayay, G.B. Kauffman, Synth. React. Inorg. Met. Org. Chem. 22, 1111 (1992)

    Article  CAS  Google Scholar 

  51. R. Mehrotra, S.N. Shukla, P. Gaur, Europ. J. Med. Chem. (2023). https://doi.org/10.1016/j.ejmcr.2023.100104

    Article  Google Scholar 

  52. Chandra, M. Pundir, Spectrochim. Acta A 69, 1–7 (2008). https://doi.org/10.1016/j.saa.2007.02.019

    Article  CAS  ADS  Google Scholar 

  53. F. Liang, C. Wu, H. Lin, T. Li, D. Gao, Z. Li, J. Wei, C. Zheng, M. Sun, Bioorg. Med. Chem. Lett. 13, 2469 (2003). https://doi.org/10.1016/S0960-894X(03)00489-X

    Article  CAS  PubMed  Google Scholar 

  54. F. Liang, P. Wang, X. Zhou, T. Li, Z. Li, H. Lin, D. Gao, C. Zheng, C. Wu, Bioorg. Med. Chem. Lett. 14, 1901 (2004). https://doi.org/10.1016/j.bmcl.2004.01.089

    Article  CAS  PubMed  Google Scholar 

  55. D. Kong, Y. Xie, Chim. Inorg. Acta 338, 142 (2002). https://doi.org/10.1016/S0020-1693(02)01025-3

    Article  CAS  Google Scholar 

  56. S. Chandra, R. Gupta, N. Gupta, S.S. Bawa, Transit. Met. Chem. 31, 147 (2006). https://doi.org/10.1007/s11243-005-6194-5

    Article  CAS  Google Scholar 

  57. M.S.N.A. Prasad, R.D. Puthalapattu, B.K. Babu, S. Kanchi, Lett. Appl. Nano BioSci. 12(2), 41 (2023). https://doi.org/10.33263/LIANBS122.041

    Article  Google Scholar 

  58. R.V. Singh, A. Chaudhary, J. Inorg. Biochem. 98, 1712 (2004). https://doi.org/10.1016/j.jinorgbio.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  59. D.P. Singh, R. Kumar, V. Malik, P. Tyagi, J. Enz. Inhib. Med. Chem. 22, 177 (2007). https://doi.org/10.1080/14756360601051399

    Article  CAS  Google Scholar 

  60. H.U. Rashid, M.A.U. Martines, J. Jorge, P.M.D. Moraes, M.N. Umar, K. Khanand, H.U. Rehman, Bioorg. Med. Chem. 24, 5663 (2016). https://doi.org/10.1016/j.bmc.2016.09.069

    Article  CAS  PubMed  Google Scholar 

  61. P.B. Tsitovich, J.R. Morrow, Inorg. Chim. Acta 393, 3 (2012). https://doi.org/10.1016/j.ica.2012.06.010

    Article  CAS  Google Scholar 

  62. L. Guijarro, M. Inclan, J.P. Jarque, C.A. Domenech, J.U. Chicote, S. Trefler, E.E. Garcia, A.E. Garca, B.H. Verdejo, Inorg. Chem. 56, 13748 (2017). https://doi.org/10.1021/acs.inorgchem.7b01756

    Article  CAS  PubMed  Google Scholar 

  63. C. Marin, M. Inclan, I.R.I. Maci, M.T. Albelda, R. Canas, M.P. Clares, J.G. Garcia, M.J. Rosales, K. Urbanova, E.E. Garcia, RSC Adv. 6, 17446 (2016). https://doi.org/10.1039/c5ra21262f

    Article  CAS  ADS  Google Scholar 

  64. C. Serena, E. Calvo, M.P. Clares, M.L. Diaz, J.U. Chicote, B.N.R. Debon, R. Fontova, A. Rodriguez, E.E. Garcia, E. Garcia, PLoS ONE 10, e0119102 (2015). https://doi.org/10.1371/journal.pone.0119102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. V.G. Organo, A.S. Filatov, J.S. Quartararo, Z.M. Friedman, E.V. Akimova, Inorg. Chem. 48, 8456 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. M. Passaponti, M. Savastano, M.P. Clares, M. Inclan, A. Lavacchi, A. Bianchi, E.E. Garcia, M. Innocenti, Inorg. Chem. 57, 14484 (2018). https://doi.org/10.1021/acs.inorgchem.8b02695

    Article  CAS  PubMed  Google Scholar 

  67. M. Savastano, P.M. Arranz, C. Bazzicalupi, M.P. Clares, M.L.S. Godino, L. Guijarro, M.D.V. Gutierrez, A. Bianchi, E.E. Garcia, R.L. Garzon, ACS Omega 2, 3868 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. K.R. Ciszek, T.P. Sniak, I. Zaborniak, P.B.K. Surmacz, A. Sobkowiak, Paweł Chmielarz Proc. 8, 1683 (2020). https://doi.org/10.3390/pr8121683

    Article  CAS  Google Scholar 

  69. M. Savastano, P.M. Arranz, C. Bazzicalupi, M.P. Clares, M.L.S. Godino, M.D.V. Gutierrez, M. Inclan, A. Bianchi, E.E. Garcia, R.G. Lopez, J. Catal. 353, 239 (2017). https://doi.org/10.1016/j.jcat.2017.07.023

    Article  CAS  Google Scholar 

  70. E.M. Driggers, S.P. Hale, J. Lee, N.K. Terrett, Nat. Rev. Drug Dis. 7, 608 (2008). https://doi.org/10.1038/nrd2590

    Article  CAS  Google Scholar 

  71. J.W. Steed, J.L. Atwood, Supramolecular Chemistry, 2nd edn. (Wiley, New York, 2009)

    Book  Google Scholar 

  72. S. Higson, F. Davis, Macrocycles: Construction, Chemistry and Nanotechnology Applications (Wiley, New York, 2011)

    Google Scholar 

  73. J.W. Steed, P.A. Gale, Supramolecular Chemistry: from Molecules to Nano-materials (Wiley, New York, 2012)

    Google Scholar 

  74. N. Boechat, W.B. Kover, M.M. Bastos, N.C. Romeiro, Des. Med. Chem. Res. 15, 492 (2007)

    Article  CAS  Google Scholar 

  75. H.A.E. Boraey, O.A.E. Gammal, Open Chem. J. 5, 51 (2018)

    Article  Google Scholar 

  76. A.I. Hanafy, A.B.K.T. Maki, M.M. Mostafa, Transit. Met. Chem. 32, 960 (2007). https://doi.org/10.1007/s11243-007-0268-5

    Article  CAS  Google Scholar 

  77. M. Shakir, P. Chingsubam, H.T.N. Chishti, Y. Azim, N. Begum, Indian J. Chem. 43A, 556 (2004)

    CAS  Google Scholar 

  78. D.C. Surendra, V. Thangaraj, A.P. Raj, Arab. J. Chem. 9, 731 (2016)

    Article  Google Scholar 

  79. J. Seto, S. Tamura, A. Noriyuki, K. Nobuyuki, Y. Kijima, M. Nobuyuki, Pure and Appl. Chem. 68(7), 1429 (1996). https://doi.org/10.1351/pac199668071429

    Article  CAS  Google Scholar 

  80. W. Dong, R. Yang, L. Yan, Ind. J. Chem. 40A, 202 (2001)

    CAS  Google Scholar 

  81. D.S. Kumar, V. Alexander, Polyhedron 18, 1561 (1999). https://doi.org/10.1016/S0277-5387

    Article  CAS  Google Scholar 

  82. S. Ilhan, H. Temel, R. Ziyadanogullari, Transit. Met. Chem. 32, 584 (2007). https://doi.org/10.1007/s11243-007-0217-3

    Article  CAS  Google Scholar 

  83. A. Kumar, V.K. Vashistha, P. Tevatia, R. Singh, Anal. Bioanal. Electro chem. 8, 848 (2016)

    Google Scholar 

  84. A.B. Habtemariam, A.K. Sibhatu, G.K. Weldegebrieal, O.A. Zelekew, B.T. Tekletsadik, Lett. Appl. NanoBioSci. 9, 808 (2020). https://doi.org/10.33263/LIANBS91.808813

    Article  Google Scholar 

  85. T.T. Subhanandaraj, K.T. Raghavan, R. Narayanan, Lett. Appl. Nanobiosci. 9, 988 (2020). https://doi.org/10.33263/LIANBS92.988994

    Article  Google Scholar 

  86. D. Tesfaye, W. Linert, M. Gebrezgiabher, Y. Bayeh, F. Elemo, T. Sani, N. Kalarikkal, M. Thomas, Molecules 28, 1012 (2023). https://doi.org/10.3390/molecules28031012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. L.W. Hruska, R.F. Savinell, J. Electrochem. Soc. 128, 18 (1981)

    Article  CAS  ADS  Google Scholar 

  88. M. Richard, Burger, Am. Chem. Soc. Chem. Rev. 98(3), 1153 (1998)

    Article  Google Scholar 

  89. M. Sidney, Hecht, The chemistry of activated Bleomycin. Am. Chem. Soc. 19, 383 (1986). https://doi.org/10.1021/ar00132a002

    Article  Google Scholar 

  90. S. Joanne, W.J. Kozarich, W. Wei, E.D. Vanderwall, Am. Chem. Soc. 29, 322 (1996)

    Google Scholar 

  91. W. Huang, J. Jia, J. Cummings, M. Nelson, G. Schneider, Y. Lindquist, Cryst. Struct. Nitrile Hydrate 5(5), 661 (1997)

    Google Scholar 

  92. S. Nagashima, M. Nakasako, N. Dohmae, M. Tsujimura, K. Takio, M. Odaka, M. Yohda, N. Kamiya, I. Endo, Nat. Struct. Boil. 5(5), 347 (1998)

    Article  CAS  Google Scholar 

  93. T.J. Collins, J. Am. Chem. Soc. 27, 279 (1994)

    CAS  Google Scholar 

  94. C. Nguyen, R.J. Guajardo, P.K. Mascharak, J. Am. Chem. Soc. 35, 273 (1996)

    Google Scholar 

  95. S.J. Brown, M.M. Olmstead, P.K. Mascharak, J. Am. Chem. Soc. 29, 3229 (1990)

    CAS  Google Scholar 

  96. H. Umezawa, T. Takita, Y. Sugiur, M. Otsuko, S. Kobayashi, M. Ohno, Tetrahedron 40(3), 501 (1984)

    Article  CAS  Google Scholar 

  97. S. Zhu, W.W. Brennessel, R.G. Harrison, L.G. Que, Inorganic Chim. Acta 337, 32 (2002)

    Article  CAS  Google Scholar 

  98. D.S. Marlin, P.K. Mascharak, RSC 29, 69 (2000). https://doi.org/10.1039/A905282H

    Article  CAS  Google Scholar 

  99. T. Li, Q. Fang, X. Xi, Y. Chen, F. Liu, J. Mater. Chem. C7, 586 (2019). https://doi.org/10.1039/c8ta08829b

    Article  CAS  Google Scholar 

  100. H. Zhang, J.R. Wu, X. Wang, X.S. Li, M.X. Wu, F. Liang, V.W. Yang, Dyes Pigm. 162, 512 (2019). https://doi.org/10.1016/j.dyepig.2018.10.061

    Article  CAS  Google Scholar 

  101. J. Zhou, M. Chen, G. Diao, J. Am. Chem. Soc. (2014). https://doi.org/10.1021/am505714

    Article  PubMed  PubMed Central  Google Scholar 

  102. H. Zhu, J. Liu, B. Shi, H. Wang, Z. Mao, T. Shan, F. Huang, Mater. Chem. Front. 2, 1475 (2018)

    Article  CAS  Google Scholar 

  103. C.R. Thomas, D.P. Ferris, J.H. Lee, E. Choi, M.H. Cho, E.S. Kim, J.F. Stoddart, S.J.S. Hin, J. Cheon, J.I. Zink, J. Am. Chem. Soc. 132, 10623 (2010)

    Article  CAS  PubMed  Google Scholar 

  104. H. Qiao, J. Jia, H. Shen, S. Zhao, E. Chen, W. Chen, B. Di, C. Hu, Enzym. Adv. Healthc. Mater. (2019). https://doi.org/10.1002/adhm.201900174

    Article  Google Scholar 

  105. H. Boruah, N. Tyagi, S.K. Gupta, M. Chabukdhara, T. Malik, Front. Environ. Sci. 11, 162 (2023). https://doi.org/10.3389/fenvs.2023.1104320

    Article  Google Scholar 

  106. R. Kanaoujiya, S.K. Saroj, V.D. Rajput, Alimuddin, S. Srivastava, T. Minkina, A. Kumar, Emergent Mater. (2023). https://doi.org/10.1007/s42247-023-00461-8

    Article  PubMed  PubMed Central  Google Scholar 

  107. K. Wang, K. Chen, J. Cai, C. Redshaw, Inorg. Chem. Commun. 139, 109376 (2022). https://doi.org/10.1016/j.inoche.2022.109376

    Article  CAS  Google Scholar 

  108. T. Marshall-Roth, N.J. Libretto, A.T. Wrobel, Nat. Commun. 11, 5283 (2020). https://doi.org/10.1038/s41467-020-18969-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Y. Hong, L. Li, B. Huang, X. Tang, W. Zhai, T. Hu, K. Yuan, Y. Chen, Adv. Energy mater. (2021). https://doi.org/10.1002/aenm.202100866

    Article  Google Scholar 

  110. J. Zhang, Y. Yu, M.A. Mekhail, H. Wu, K.N. Green, Front. Chem. 10, 996604 (2022). https://doi.org/10.3389/fchem.2022.996604

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. V.K. Vashistha, A. Kumar, P. Tevatia, D.K. Das, Russ. J. Elctrochem. 57(4), 348 (2021). https://doi.org/10.1134/S1023193521040091

    Article  Google Scholar 

  112. L. Chen, L. Ma, Y. Jiang, Polym. Bull. 78, 415 (2021). https://doi.org/10.1007/s00289-020-03119-1

    Article  CAS  Google Scholar 

  113. S. Lamba, A. Kumari, S. Bugalia, Int. J. Chem. Sci. 5(3), 27 (2021)

    Google Scholar 

  114. J. Salaam, T. Fogeron, G. Pilet, R. Bolbos, C. Bucher, L. Khrouz, J. Hasserodt, Angew. Chem. (2022). https://doi.org/10.1002/anie.202212782

    Article  Google Scholar 

  115. V. Sharma, V.K. Vasistha, D.K. Das, Biointerface Res. Appl. Chem. 11(1), 7393 (2021)

    CAS  Google Scholar 

  116. V.K. Vashistha, D.K. Das, A. Yadav, D. Saini, A. Kumar, Anal. Bioanal. Electrochem. 12(3), 318 (2020)

    CAS  Google Scholar 

  117. S.T. Dong, C. Xu, B.L. Kaiser, Chem. Sci. 14, 550 (2023). https://doi.org/10.1039/D2SC04729B

    Article  CAS  PubMed  Google Scholar 

  118. J. Xie, A. Haeckel, R. Hauptmann, I.P. Ray, C. Limberg, N. Kulak, B. Hamm, E. Schellenberger, Magn. Reson. Med. 85, 3370 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. M.A. Mekhail, K. Pota, T.M. Schwartz, K.N. Green, RSC 10, 31165 (2020). https://doi.org/10.1039/D0RA05756H

    Article  CAS  ADS  Google Scholar 

  120. M. Botta, C.F.G.C. Geraldes, L. Tei, Nanomed. Nanobiotechnol. 15, e1858 (2023). https://doi.org/10.1002/wnan.1858

    Article  CAS  Google Scholar 

  121. E.M. Snyder, D. Asik, S.M. Abozeid, A. Burgio, G. Bateman, S.G. Turowski, J.A. Spernyak, J.R. Morrow, Angew. Chem. Int. Ed. Engl. 59(6), 2414 (2020)

    Article  CAS  PubMed  Google Scholar 

  122. V. Sangwan, D.P. Singh, Vietnam J. Chem. 59(3), 285 (2021). https://doi.org/10.1002/vjch.201900122

    Article  CAS  Google Scholar 

  123. K.R. Ciszek, T. Pacze ́ssniak, P. Chmielarz, A. Sobkowiak, Molecules 28, 2240 (2023). https://doi.org/10.3390/molecules28052240

    Article  CAS  Google Scholar 

  124. S. Sharma, R.M.N. Chopra, V. Chugh, Orient. J. Chem. 35(1), 318 (2019)

    Article  CAS  Google Scholar 

  125. V. Sangwan, D.P. Singh, Vietnam J. Chem. 57(5), 543 (2019). https://doi.org/10.1002/vjch.201900058

    Article  CAS  Google Scholar 

  126. A. Sharma, UGC, New Recognized Journal no.-41311, 6(4), 137 (2018)

  127. R.M. Chopra, Rasayan J. Chem. 11(2), 694 (2018). https://doi.org/10.31788/RJC.2018.1121953

    Article  CAS  Google Scholar 

  128. V. Grover, IJSTM 5(1), 299 (2016)

    Google Scholar 

  129. M. Khatun, P. Ghorai, J. Mandal, S.G. Chowdhury, P. Karmakar, S. Blasco, E. García-España, A. Saha, ACS Omega 8(8), 7479 (2023). https://doi.org/10.1021/acsomega.2c06549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. V. Singh, S. Ali, IJSTM 4(1), 15 (2015)

    Google Scholar 

  131. Á. Martín-Montes, Á. Martínez-Camarena, A. Lopera, I. Bonastre-Sabater, M.P. Clares, B. Verdejo, E. García-España, C. Marín, Pharmaceutics 15, 992 (2023). https://doi.org/10.3390/pharmaceutics15030992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. P. Rathi, D.P. Singh, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.07.025

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Chemistry, University of Rajasthan, Jaipur (India), for providing all kinds of facilities and support related to this work.

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed a lot for preparing the manuscript entitled “A review on recent advances of iron-based macrocyclic complexes as prominent candidate for several potential applications.” For this, literature survey was carried out by SB, OPG, PS, KA, and SK, research scholars of University of Rajasthan, Jaipur (INDIA). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Swati Bugalia.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that no funds or grants were received during the preparation of this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurjar, O.P., Saini, P., Kumari, S. et al. A review on recent advances of iron-based macrocyclic complexes as prominent candidate for several potential applications. J IRAN CHEM SOC 21, 305–326 (2024). https://doi.org/10.1007/s13738-023-02934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02934-3

Keywords

Navigation