Skip to main content
Log in

Gold nanoparticle conjugation and tumor accumulation of a VEGF receptor-targeting peptidomimetic

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) exhibit promising potential for both cancer treatment and diagnosis. While the conjugation with tumor-targeting peptides enhances GNP functionality, there remains a need for further exploration of GNP transport and accumulation within tumors in vivo. This study focuses on the synthesis, characterization, cell binding, and biodistribution of GNPs adorned with a peptide targeting vascular endothelial growth factor receptor (VEGFR)-1/-2, named VGB3. The synthesized naked and VGB3-conjugated GNPs underwent through characterization using UV–Vis, DLS, FTIR, and TEM. Cellular analysis through immunocytochemistry and flow cytometry revealed that VGB3 and GNP-VGB3 selectively bound to VEGFR-1/-2-expressing human umbilical vein endothelial cells (HUVECs) and murine 4T1 mammary carcinoma tumor cells, with no affinity observed for VEGFR-1/-2-deficient HL-60 acute myeloid leukemia cell line. SPECT imaging of whole animals demonstrated specific accumulation of  fluorescein isothiocyanate (FITC)-VGB3-decorated GNPs in 4T1 tumors. These results affirm the suitability of cell-specific peptides for targeted GNP delivery, emphasizing their potential in biomedical applications and targeted therapeutics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Folkman, Nat. Med. 1, 27–31 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. T.W. Miller, J.S. Isenberg, D.D. Roberts, Chem. Rev. 109, 3099–3124 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Ai, C. Zhang, L. Li, J. Jiang, Appl. Catal. B-Environ. 148, 191–200 (2014)

    Article  Google Scholar 

  4. Q. Sun, T. Ojha, F. Kiessling, T. Lammers, Y. Shi, Biomacromol 18, 1449–1459 (2017)

    Article  CAS  Google Scholar 

  5. N. Ferrara, A.P. Adamis, Nat. Rev. Drug Discov. 15, 385–403 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. Q. Feng, C. Zhang, D. Lum, J.E. Druso, B. Blank, K.F. Wilson, A. Welm, M.A. Antonyak, R.A. Cerione, Nat. Commun. 8, 14450 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Agarwal, R. Gabrani, Int. J. Pept. Res. Ther. 27, 149–168 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. G. Zerbini, M. Lorenzi, A. Palini, New Engl. J. Med. 359, 763–764 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. M. Gyurkovics, Z. Lohinai, A. Gyorfi, D.A. Székely, E. Dinya, A. Fazekas, L. Rosivall, Fogorv. Sz. 106, 53–59 (2013)

    PubMed  Google Scholar 

  10. M. Shibuya, Endocr Metab Immune Disord Drug Targets 15, 135–144 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. B.L. Ziegler, M. Valtieri, G.A. Porada, R. De Maria, R. Müller, B. Masella, M. Gabbianelli, I. Casella, E. Pelosi, T. Bock, E.D. Zanjani, C. Peschle, Science 285, 1553–1558 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. B. Barleon, S. Sozzani, D. Zhou, H.A. Weich, A. Mantovani, D. Marmé, Blood 87, 3336–3343 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. W.T. Bellamy, L. Richter, D. Sirjani, C. Roxas, B. Glinsmann-Gibson, Y. Frutiger, T.M. Grogan, A.F. List, Blood 97, 1427–1434 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. P. Zanjanchi, S.M. Asghari, H. Mohabatkar, M. Shourian, M. Shafiee Ardestani, J. Nanobiotechnol. 20, 7 (2022)

    Article  CAS  Google Scholar 

  15. A. Sadremomtaz, A.M. Ali, F. Jouyandeh, S. Balalaie, R. Navari, S. Broussy, K. Mansouri, M.R. Groves, S.M. Asghari, Signal Transduct. Target. Ther. 5, 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A.D. AlQahtani, D. O’Connor, A. Domling, S.K. Goda, Biomed. Pharmacother. 113, 108750 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. A. Babaei, S.M. Mousavi, M. Ghasemi, N. Pirbonyeh, M. Soleimani, A. Moattari, Life Sci. 284, 119652 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. R.R. Arvizo, S. Saha, E. Wang, J.D. Robertson, R. Bhattacharya, P. Mukherjee, Proc. Natl. Acad. Sci. U.S.A. 110, 6700–6705 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri Aval, M. Kouhi, A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol. 44, 410–422 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. M. Shourian, H. Ghourchian, M. Boutorabi, J. Anal. Chim. Acta. 895, 1–11 (2015)

    Article  CAS  Google Scholar 

  21. S. Ashraf, B. Pelaz, P. del Pino, M. Carril, A. Escudero, W.J. Parak, M.G. Soliman, Q. Zhang, C. Carrillo-Carrion, Top. Curr. Chem. 370, 169–202 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. R.S. Darweesh, N.M. Ayoub, S. Nazzal, Int. J. Nanomed. 14, 7643–7663 (2019)

    Article  CAS  Google Scholar 

  23. M. Shourian, H. Ghourchian, M. Boutorabi, Anal. Chim. Acta 895, 1–11 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. J. Turkevich, P.C. Stevenson, J. Hillier, Faraday Discuss. 11, 55–75 (1951)

    Article  Google Scholar 

  25. S. Balakrishnan, F. Bhat, P. Raja Singh, S. Mukherjee, P. Elumalai, S. Das, C. Patra, J. Arunakaran, Cell Prolif. 49, 678–697 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Farzaneh Behelgardi, S. Zahri, F. Mashayekhi, K. Mansouri, S.M. Asghari, Sci. Rep. 8, 17924 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Zheng, S. Ji, A. Czerwinski, F. Valenzuela, M. Pennington, S. Liu, Bioconjug. Chem. 25, 1925–1941 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S.M. Ansar, S. Chakraborty, C.L. Kitchens, Nanomaterials 8(5), 339 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  29. S. Kalmodia, S. Vandhana, B.R. Tejaswini Rama, B. Jayashree, T. Sreenivasan Seethalakshmi, V. Umashankar, W. Yang, C.J. Barrow, S. Krishnakumar, S.V. Elchuri, Cancer Nanotechnol. 7, 1 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  30. B. Yahyaei, P. Pourali, Sci. Rep. 9, 10242 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. A.G. Rad, H. Abbasi, M.H. Afzali, Phys. Procedia 22, 203–208 (2011)

    Article  ADS  Google Scholar 

  32. S.B. Rice, C. Chan, S.C. Brow, P. Eschbach, L. Han, D.S. Ensor, A.B. Stefaniak, J. Bonevich, A.E. Vladár, A.R. Hight Walker, J. Zheng, C. Starnes, A. Stromberg, J. Ye, E.A. Grulke, Metrologia 50, 663–678 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. E. Assareh, F. Mehrnejad, K. Mansouri, A.R. Esmaeili Rastaghi, H. Naderi-Manesh, S.M. Asghari, Biochem. J. 476, 645–663 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. W. Haiss, N.T. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79, 4215–4221 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. M. Simons, E. Gordon, L. Claesson-Welsh, Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. Z. Bacsik, J. Mink, G. Keresztury, Appl. Spectros. Rev. 39, 295–363 (2004)

    Article  ADS  CAS  Google Scholar 

  37. J. Jin, M. Ovais, C. Chen, NanoToday 22, 83–99 (2018)

    Article  CAS  Google Scholar 

  38. R. Masood, J. Cai, T. Zheng, D.L. Smith, D.R. Hinton, P.S. Gill, Blood 98, 1904–1913 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Tehran and Payame Noor University for their support. The authors would like to acknowledge the Preclinical Lab, Core Facility, Tehran University of Medical Sciences, Tehran, Iran, for providing this research's in vivo imaging and image processing services.

Author information

Authors and Affiliations

Authors

Contributions

SMA, MF, PZ contributed to conceptualization. SMA, MSA, PZ contributed to methodology. RN-M-F and PZ contributed to software. SMA, MSA, PZ contributed to validation. PZ contributed to formal analysis. RN-M-F contributed to investigation; SMA, MSA contributed to resources. RN-M-F and PZ contributed to data curation. SMA contributed to writing-original draft; SMA, PZ contributed to writing-review and editing. MSA contributed to visualization; SMA contributed to supervision; and SMA, MF contributed to project administration.

Corresponding author

Correspondence to S. Mohsen Asghari.

Ethics declarations

Conflict of interest

The authors declare the patent application (US Patent and Trademark Office, Patent No 10745454 [Method of synthesizing antagonist peptides for cell growth]).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 693 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navidi-Moghadam-Foumani, R., Fazilati, M., Shafiee Ardestani, M. et al. Gold nanoparticle conjugation and tumor accumulation of a VEGF receptor-targeting peptidomimetic. J IRAN CHEM SOC 21, 293–303 (2024). https://doi.org/10.1007/s13738-023-02925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02925-4

Keywords

Navigation