Skip to main content
Log in

Molecular salts of pipemedic acid and crystal structure, spectral properties, and Hirshfeld surface analysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The research involves synthesizing 1:1 salts of Pipemedic acid (PMA) with oxalic acid (OA), salicylic acid (SA), and p-Toluene sulfonic monohydrate (BS) using a slow evaporation method. Many characterization techniques, including FT-IR, DSC, Single XRD, and DFT calculations, were employed to analyze the salts’ structural and physicochemical properties. The proton is transferred from oxalic, salicylic acid, and p-toluene sulfonic monohydrate to pyridine nitrogen of PMA. The salt 1OA, crystallizes in the monoclinic space group P 21/c, with a = 9.923(3) Å a = 90°, b = 9.443(3) Å b = 92.470(10)°and c = 18.248(5) Å g = 90° and volume = 1708.3(9) Å3and Z = 4. The salt 2SA crystallizes in the monoclinic space group P 21/c, with a = 6.8877(3) Å a = 90°.b = 13.9149(6) Å b = 98.092(2)° and c = 21.5313(10) Å g = 90° with volume = 2043.05(16) Å3 and Z = 4.The salt 3BS crystallizes in the monoclinic space group P 21/c, with, a = 9.3352(4) Å a = 90°, b = 12.7754(5) Å b = 97.722(2)°, c = 19.5462(8) Å g = 90°,with volume = 2309.96(16) Å3 and Z = 4. Supramolecular centrosymmetric ring motifs are formed by N–H···O hydrogen bonds between protonated nitrogen of the pyridone ring and the carboxylic O atom of the oxalate ion, in both 1OA and 2SA. The dihedral angles of 1OA, 2SA, and 3BS are found to be 43.63°, 88.19°, and 53.89° respectively. The Hirshfeld surfaces and the related 2D fingerprint plots were explored which uncovered that more than two-thirds of close contacts were related to H⋯H, C–H, N–H, and C–C bonding interactions whereas in 3BS, the structure is stabilized by N–H···O and N–H···S hydrogen bonding interactions. These weak associations assume a significant role in crystal packing as revealed by the Hirshfeld surfaces and the related 2D fingerprint plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.N. Wong, Y.C.S. Chen, B. Xuan, C.C. Sun, S.F. Chow, Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 23(40), 7005–7038 (2021)

    Article  CAS  Google Scholar 

  2. S.L. Childs, K.I. Hardcastle, Cocrystals of piroxicam with carboxylic acids. Cryst. Growth Des. 7(7), 1291–1304 (2007)

    Article  CAS  Google Scholar 

  3. N.P. Jaywant, D.A. Purnima, Development of efavirenz cocrystals from stoichiometric solutions by spray drying technology. Mater. Today Proc. 3(6), 1742–1751 (2016)

    Article  Google Scholar 

  4. J.A.B. dos Santos, J.V. Chaves Júnior, R.S. de Araújo Batista, D.P. de Sousa, G.L.R. Ferreira, S.A. de Lima Neto, C.F.S. Aragão, Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J. Therm. Anal. Calorim. 145, 379–390 (2021)

    Article  Google Scholar 

  5. O.O. Abosede, A.T. Gordon, T.O. Dembaremba, C.M. Lorentino, H.F. Frota, A.L. Santos, A.S. Ogunlaja, Trimesic acid–theophylline and isopthalic acid–caffeine cocrystals: synthesis, characterization, solubility, molecular docking, and antimicrobial activity. Cryst. Growth Des. 20(5), 3510–3522 (2020)

    Article  CAS  Google Scholar 

  6. R. Kumar Bandaru, S.R. Rout, G. Kenguva, B. Gorain, N.A. Alhakamy, P. Kesharwani, R. Dandela, Recent advances in pharmaceutical cocrystal. Front. Pharmacol. 12, 2954 (2021)

    Article  Google Scholar 

  7. G.J. Fernandes, M. Rathnanand, Formulation optimization for gastroretentive drug delivery system of carvedilol cocrystals using design of experiment. J. Pharm. Innov. 15, 455–466 (2020)

    Article  Google Scholar 

  8. A.N. Allam, V.F. Naggar, S.S. El Gamal, Pharmaceutical development and technology. Pharm. Dev. Technol. 18(4), 856–865 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. Y.M. Yu, F.Z. Bu, L. Liu, C.W. Yan, Z.Y. Wu, Y.T. Li, A novel sustained-release formulation of 5-fluorouracil-phenylalanine cocrystal self-assembled by cocrystal-entrapped micelle strategy displays enhanced antitumor efficacy. J. Mol. Liq. 368, 120665 (2022)

    Article  CAS  Google Scholar 

  10. C. Cappuccino, D. Cusack, J. Flanagan, C. Harrison, C. Holohan, M. Lestari, M. Lusi, How many cocrystals are we missing? Assessing two crystal engineering approaches to pharmaceutical cocrystal screening. Cryst. Growth Des. 22(2), 1390–1397 (2022)

    Article  CAS  Google Scholar 

  11. M.C. Mannava, M.K.D.R. Bommaka, K.A. Solomon, A.K. Nangia, Fluorobenzoic acid coformers to improve the solubility and permeability of the BCS class IV drug naftopidil. Chem. Commun. 58(37), 5582–5585 (2022)

    Article  CAS  Google Scholar 

  12. R. Thakuria, B. Sarma, Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering approach. Crystals 8(2), 101 (2018)

    Article  Google Scholar 

  13. K.A. Solomon, O. Blacque, R. Venkatnarayan, Molecular salts of 2, 6-dihydroxybenzoic acid (2, 6-DHB) with N-heterocycles: crystal structures, spectral properties and Hirshfeld surface analysis. J. Mol. Struct. 1134, 190–198 (2017)

    Article  CAS  Google Scholar 

  14. G.N. Karthammaiah, S. Rao Amaraneni, A.K. Solomon, Co-crystal of nadifloxacin with oxalic acid. Acta Crystallogr. Sec. E Crystallogr. Commun. 79(4), 319–322 (2023)

    Article  CAS  Google Scholar 

  15. S.M.A. Mashhadi, D. Yufit, H. Liu, P. Hodgkinson, U. Yunus, Synthesis and structural characterization of cocrystals of isoniazid and cinnamic acid derivatives. J. Mol. Struct. 1219, 128621 (2020)

    Article  CAS  Google Scholar 

  16. K.A. Solomon, Molecular modelling and drug design (MJP Publisher, Chennai, 2019)

    Google Scholar 

  17. J.V.C. Júnior, J.A.B. Dos Santos, T.B. Lins, R.S. de Araújo Batista, S.A. de Lima Neto, A. de Santana Oliveira, C.F.S. Aragão, A new ferulic acid–nicotinamide cocrystal with improved solubility and dissolution performance. J. Pharm. Sci. 109(3), 1330–1337 (2020)

    Article  Google Scholar 

  18. S. Karki, T. Friščić, L. Fabian, P.R. Laity, G.M. Day, W. Jones, Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv. Mater. 21(38–39), 3905–3909 (2009)

    Article  CAS  Google Scholar 

  19. M. Shimizu, Y. Takase, S. Nakamura, H. Katae, A. Minami, K. Nakata, Y. Kubo, Pipemidic acid, a new antibacterial agent active against Pseudomonas aeruginosa: in vitro properties. Antimicrob. Agents Chemother. 8(2), 132–138 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Ito, K. Hirai, M. Inoue, H. Koga, S. Suzue, T. Irikura, S. Mitsuhashi, In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob. Agents Chemother. 17(2), 103–108 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P.B. Fernandes, Mode of action, and in vitro and in vivo activities of the fluoroquinolones. J. Clin. Pharmacol. 28(2), 156–168 (1988)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhang, Y. Duan, J. Su, L. Liu, Y. Feng, L. Wu, Y. Liu, Inspiration for revival of old drugs: improving solubility and avoiding hygroscopicity of pipemidic acid by forming two pharmaceutical salts based on charge-assisted hydrogen bond recognitions. New J. Chem. 45(42), 19704–19713 (2021)

    Article  CAS  Google Scholar 

  23. P.C. Alves, P. Rijo, C. Bravo, A.M.M. Antunes, V. André, Bioactivity of isostructural hydrogen bonding frameworks built from pipemidic acid metal complexe. Molecules 25(10), 2374 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. A.S. Al-Wasidi, Synthesis and spectroscopic characterizations of some essential metal ion (MgII, CaII, ZnII, and FeIII) pipemidic acid chemotherapeutic agent complexes. Crystals 13(4), 596 (2023)

    Article  CAS  Google Scholar 

  25. B.S. Chethan, N.K. Lokanath, Study of the crystal structure, H-bonding and noncovalent interactions of novel cocrystal by systematic computational search approach. J. Mol. Struct. 1251, 131936 (2022)

    Article  CAS  Google Scholar 

  26. L.W.Y. Sun, F. Yang, X. Zhang, W. Hu, Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), 1902328 (2019)

    Article  Google Scholar 

  27. M.C.G.A. Mannava, M.K. Bommaka, K.A. Solomon, A.K. Nangia, Solubility and permeability enhancement of BCS class IV drug ribociclib through cocrystallization. CrystEngComm 24(45), 7915–7923 (2022)

    Article  CAS  Google Scholar 

  28. O. Dolomanov, L. Bourhis, R. Gildea, J. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst 42, 339–341 (2009)

    Article  CAS  Google Scholar 

  29. P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka, M.A. Spackman, CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 54(3), 1006–1011 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. Jelsch, K. Ejsmont, L. Huder, The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 1(2), 119–128 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S.V. Puchkov, Y.V. Nepomnyashchikh, Evaluation of the reactivity of cyclohexanone CH bonds in reactions with tert-butylperoxy radical by quantum chemical methods. Kinet. Catal. 62, 479–487 (2021)

    Article  CAS  Google Scholar 

  32. J.S. Singh, IR and Raman spectra with Gaussian-09 molecular analysis of some other parameters and vibrational spectra of 5-fluoro-uracil. Res. Chem. Intermed. 46(5), 2457–2479 (2020)

    Article  CAS  Google Scholar 

  33. K.E. Srikanth, A. Veeraiah, T. Pooventhiran, R. Thomas, K.A. Solomon, C.J.S. Raju, J.N.L. Latha, Detailed molecular structure (XRD), conformational search, spectroscopic characterization (IR, Raman, UV, fluorescence), quantum mechanical properties and bioactivity prediction of a pyrrole analogue. Heliyon 6(6), e04106 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  34. A.N. Manin, K.V. Drozd, A.V. Churakov, G.L. Perlovich, Hydrogen bond donor/acceptor ratios of the coformers: do they really matter for the prediction of molecular packing in cocrystals? The case of benzamide derivatives with dicarboxylic acids. Cryst. Growth Des. 18(9), 5254–5269 (2018)

    Article  CAS  Google Scholar 

  35. V. Andre, P.C. Alves, M.T. Duarte, Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review). Inorg. Chim. Acta 525, 120474 (2021)

    Article  CAS  Google Scholar 

  36. I. Warad, A. Alruwaili, S.I. Al-Resayes, M.I. Choudhary, S. Yousuf, 5, 5-dimethyl-2, 2-bis (pyridin-2-yl)-1, 3-diazinane. Acta Crystallogr. Sect. E Struct. Rep. Online 68(6), o1786–o1786 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Saeed, Z. Ashraf, H. Nadeem, J. Simpson, H. Pérez, M.F. Erben, An investigation of supramolecular synthons in 1, 2, 4-triazole-3 (4H)-thione compounds. X-ray crystal structures, energetic and Hirshfeld surface analysis. J. Mol. Struct. 1195, 796–806 (2019)

    Article  CAS  Google Scholar 

  38. O. Büyükgüngör, M. Odabaşoğlu, A.M. Vijesh, H.S. Yathirajan, (1Z)-Phthalazin-1 (2H)-one isopropylidenehydrazone. Acta Crystallogr. Sect. E Struct. Rep. Online 63(10), o4084–o4085 (2007)

    Article  Google Scholar 

  39. V. Sethuraman, N. Stanley, P.T. Muthiah, W.S. Sheldrick, M. Winter, P. Luger, M. Weber, Isomorphism and crystal engineering: organic ionic ladders formed by supramolecular motifs in pyrimethamine salts. Cryst. Growth Des. 3(5), 823–828 (2003)

    Article  CAS  Google Scholar 

  40. I.S.C.F. Macrae, S.J. Cottrell, P.T.A. Galek, P. McCabe, E. Pidcock, M. Platings, G.P. Shields, J.S. Stevens, M. Towler, P.A. Wood, Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Cryst 53, 226–235 (2020)

    Article  CAS  Google Scholar 

  41. B.A. Stenfors, R.C. Collins, J.R. Duran, R.J. Staples, S.M. Biros, F.N. Ngassa, Crystal structure of 4-methyl-N-propylbenzenesulfonamide. Acta Crystallogr. Sec. E Crystallogr. Commun. 76(7), 1070–1074 (2020)

    Article  CAS  Google Scholar 

  42. O. Şahin, O. Büyükgüngör, S. Şaşmaz, N. Gümrükçüoğlu, C. Kantar, N—H⋯ N and C—H⋯ π interactions in 4-amino-3-methyl-5-(p-tolyl)-4H-1, 2, 4-triazole and 4-amino-3-methyl-5-phenyl-4H-1, 2, 4-triazole. Acta Crystallogr. Sec. C Cryst. Struct. Commun. 62(11), o643–o646 (2006)

    Article  Google Scholar 

  43. K.K. Sarmah, T. Rajbongshi, S. Bhowmick, R. Thakuria, First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt. Acta Crystallogr. Sec. B: Struct. Sci. Crys. Eng. Mater. 73(5), 1007–1016 (2017)

    Article  CAS  Google Scholar 

  44. S. Kalaiyarasi, S.R. Devi, R. Akilan, R.M. Kumar, G. Chakkaravarthi, 4-methylanilinium 3-carboxy-2-hydroxypropanoate. IUCrData 1(9), x161525 (2016)

    Article  CAS  Google Scholar 

  45. H. Amarne, W. Helal, D. Taher, M. Korb, A. Al-Hunaiti, Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 5, 5-dimethyl-2-(2, 4, 6-tris (trifluoromethyl) phenyl)-1, 3, 2-dioxaborinane. Mol. Cryst. Liq. Cryst. 743(1), 77–88 (2022)

    Article  CAS  Google Scholar 

  46. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K.S. Munawar, M. Ashfaq, M.N. Tahir, Experimental and theoretical studies of new dioxomolybdenum complex: synthesis, characterization and application as an efficient homogeneous catalyst for the selective sulfoxidation. Inorg. Chimica Acta 527, 120568 (2021)

    Article  CAS  Google Scholar 

  47. C.J. Wilson, T. Cervenka, P.A. Wood, S. Parsons, Behavior of occupied and void space in molecular crystal structures at high pressure. Cryst. Growth Design 22(4), 2328–2341 (2022)

    Article  CAS  Google Scholar 

  48. H. Aziz, A. Saeed, C.J. McAdam, J. Simpson, T. Hökelek, E. Jabeen, H.R. El-Seedi, Synthesis, single crystal structure determinations, Hirshfeld surface analysis, crystal voids, interaction energies, and density functional theory studies of functionalized 1, 3-thiazoles. J. Mol. Struct. 1281, 135108 (2023)

    Article  CAS  Google Scholar 

  49. E. Irrou, Y.A. Elmachkouri, A. Oubella, H. Ouchtak, S. Dalbouha, J.T. Mague, M.L. Taha, Crystal structure determination, Hirshfeld surface, crystal void, intermolecular interaction energy analyses, as well as DFT and energy framework calculations of 2-(4-oxo-4, 5-dihydro-1H-pyrazolo [3, 4-d] pyrimidin-1-yl) acetic acid. Acta Crystallogr. Sec. ECrystallogr. Commun. 78(9), 953–960 (2022)

    Article  CAS  Google Scholar 

  50. M. Karimi-Jafari, L. Padrela, G.M. Walker, D.M. Croker, Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 18(10), 6370–6387 (2018)

    Article  CAS  Google Scholar 

  51. P. Garbacz, D. Paukszta, A. Sikorski, M. Wesolowski, Structural characterization of co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide by dsc, x-ray diffraction, ftir and raman spectroscopy. Pharmaceutics 12(7), 648 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SJC, thanks Sri Sathya Sai University for Human Excellence for all the support and encouragement. The authors acknowledge SAIF, IIT Madras for single-crystal X-ray data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anand Solomon.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shwetha, J.C., Sharma, A. & Solomon, K.A. Molecular salts of pipemedic acid and crystal structure, spectral properties, and Hirshfeld surface analysis. J IRAN CHEM SOC 20, 3161–3176 (2023). https://doi.org/10.1007/s13738-023-02905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02905-8

Keywords

Navigation