Skip to main content
Log in

A study on electrochemical hydrogen storage performance of bituminous-derived mesoporous carbon/zinc oxide nanocomposite

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

For the first time, bituminous-based mesoporous carbon/zinc oxide (BMC/ZnO) nanocomposite was synthesized and its hydrogen storage capacity was investigated. At first, ZnO nanoparticles were prepared via the homogeneous precipitation technique using green tea extract as a participant agent. In the second step, mesoporous carbon was made from bituminous coal; then, BMC/ZnO nanocomposite was prepared with a facile technique. Detailed investigation of structural and physical properties of the prepared BMC/ZnO nanocomposite was conducted using X-ray diffractometer (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and Fourier transform infrared spectrometer (FTIR). Hydrogen storage capacity of produced nanocomposite was inspected using the chronopotentiometry technique. As a result, BMC/ZnO nanocomposite as storage material shows a high electrochemical hydrogen storage equal to 4648 mAh/g. The well-structured, easily prepared and high hydrogen storage performance BMC/ZnO nanocomposite offers hopeful potential to support progressive systems of hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39(10), 1447–1454 (2001)

    Article  CAS  Google Scholar 

  2. S. Seifi, S. Masoum, Preparation of copper oxide/oak-based biomass nanocomposite for electrochemical hydrogen storage. Int. J. Hydrogen Energy 44(23), 11979–11988 (2019)

    Article  CAS  Google Scholar 

  3. T. Gholami, M. Salavati-Niasari, A. Salehabadi, M. Amiri, M. Shabani-Nooshabadi, M. Rezaie, Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract. Renew. Energy 115, 199–207 (2018)

    Article  CAS  Google Scholar 

  4. A. Salehabadi, M. Salavati-Niasari, F. Sarrami, A. Karton, Sol-Gel auto-combustion synthesis and physicochemical properties of BaAl2O4 nanoparticles; electrochemical hydrogen storage performance and density functional theory. Renew. Energy 114, 1419–1426 (2017)

    Article  CAS  Google Scholar 

  5. A. Salehabadi, M.F. Umar, A. Ahmad, M.I. Ahmad, N. Ismail, M. Rafatullah, Carbon-based nanocomposites in solid-state hydrogen storage technology: An overview. Int. J. Energy Res. 44(14), 11044–11058 (2020)

    Article  CAS  Google Scholar 

  6. X. Wan, X. Wei, J. Miao, R. Zhang, J. Zhang, Q.J. Niu, Pd-Ni/Cd loaded PPy/Ti composite electrode: synthesis, characterization, and application for hydrogen storage. Int. J. Energy Res. 43(8), 3284–3294 (2019)

    Article  CAS  Google Scholar 

  7. A. Eftekhari, B. Fang, Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrogen Energy 42(40), 25143–25165 (2017)

    Article  CAS  Google Scholar 

  8. S. Seifi, S. Masoum, Synthesis of Co9S8@ N, S Co-doped porous carbon core-shell nanocomposite with highly coulombic efficiency in electrochemical hydrogen storage application. J. Electrochem. Soc. 167(11), 110539 (2020)

    Article  CAS  Google Scholar 

  9. H. Seifi, S. Masoum, S.A.H. Tafreshi, S. Seifi, S.M. Jafari, Highly porous carbon from microalga, Chlorella Vulgaris, as an electrochemical hydrogen storage material. J. Electrochem. Soc. 167(12), 120525 (2020)

    Article  CAS  Google Scholar 

  10. A. Salehabadi, N. Ismail, N. Morad, M. Rafatullah, M. Idayu Ahmad, Preparation and application of sulfonated polysulfone in an electrochemical hydrogen storage system. Int. J. Energy Res. 45(3), 4026–4035 (2021)

    Article  CAS  Google Scholar 

  11. V. Berube, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 31(6–7), 637–663 (2007)

    Article  CAS  Google Scholar 

  12. J. Ren, H.W. Langmi, B.C. North, M. Mathe, Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39(5), 607–620 (2015)

    Article  CAS  Google Scholar 

  13. B. Panella, M. Hirscher, Hydrogen physisorption in metal–organic porous crystals. Adv. Mater. 17(5), 538–41 (2005)

    Article  CAS  Google Scholar 

  14. C. Strydom, J. Bunt, H. Schobert, M. Raghoo, Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes. Fuel Process. Technol. 92(4), 764–770 (2011)

    Article  CAS  Google Scholar 

  15. W. Xia, J. Yang, C. Liang, Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Appl. Surf. Sci. 293, 293–298 (2014)

    Article  CAS  Google Scholar 

  16. L. Giroux, J.-P. Charland, J.A. MacPhee, Application of thermogravimetric Fourier transform infrared spectroscopy (TG− FTIR) to the analysis of oxygen functional groups in coal. Energy Fuels 20(5), 1988–1996 (2006)

    Article  CAS  Google Scholar 

  17. H. Seifi, S. Masoum, Ultrasonically assisted removal of toxic dye using Iranian bituminous coal based-activated carbon: synthesis, characterization, modeling, equilibrium and kinetic studies. J. Iran. Chem. Soc. 17(11), 2969–2980 (2020)

    Article  CAS  Google Scholar 

  18. X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater Sci. 88, 1–48 (2017)

    Article  Google Scholar 

  19. N.N. Sulaiman, M. Ismail, S.N. Timmiati, K.L. Lim, Improved hydrogen storage performances of LiAlH4 + Mg (BH4)2 composite with TiF3 addition. Int. J. Energy Res. 45(2), 2882–2898 (2021)

    Article  CAS  Google Scholar 

  20. G. Surucu, A. Gencer, A. Candan, H.H. Gullu, M. Isik, CaXH3 (X= Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications. Int. J. Energy Res. 44(3), 2345–2354 (2020)

    Article  CAS  Google Scholar 

  21. T.M. Chung, Y. Jeong, Q. Chen, A. Kleinhammes, Y. Wu, Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption. J. Am. Chem. Soc. 130(21), 6668–6669 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Z. Guan, X. Wang, T. Li, Q. Zhu, M. Jia, B. Xu, Facile synthesis of rutile TiO2/carbon nanosheet composite from MAX phase for lithium storage. J. Mater. Sci. Technol. 35(9), 1977–1981 (2019)

    Article  CAS  Google Scholar 

  23. D.I. Abouelamaiem, M.J. Mostazo-López, G. He, D. Patel, T.P. Neville, I.P. Parkin et al., New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. J. Energy Storage 19, 337–347 (2018)

    Article  Google Scholar 

  24. Y. Dabaki, S. Boussami, C. Khaldi, H. Takenouti, O. Elkedim, N. Fenineche et al., The effect of ZnO addition on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.2Fe0.55 electrode used in nickel–metal hydride batteries. J. Solid State Electrochem. 21(4), 1157–64 (2017)

    Article  CAS  Google Scholar 

  25. X. Chen, S. Jeyaseelan, N. Graham, Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Manage. 22(7), 755–760 (2002)

    Article  CAS  Google Scholar 

  26. A. Eftekhari, B. Yazdani, Initiating electropolymerization on graphene sheets in graphite oxide structure. J. Polym. Sci., Part A: Polym. Chem. 48(10), 2204–2213 (2010)

    Article  CAS  Google Scholar 

  27. Y.-C. Chiu, C.-L. Huang, C. Wang, Rheological and conductivity percolations of syndiotactic polystyrene composites filled with graphene nanosheets and carbon nanotubes: a comparative study. Compos. Sci. Technol. 134, 153–160 (2016)

    Article  CAS  Google Scholar 

  28. X. Zhong, F. Dehghani, Solvent free synthesis of organometallic catalysts for the copolymerisation of carbon dioxide and propylene oxide. Appl. Catal. B 98(3–4), 101–111 (2010)

    Article  CAS  Google Scholar 

  29. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang et al., High photocatalytic activity of ZnO− carbon nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces. 3(2), 590–596 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. B. Dang, Q. Li, Y. Zhou, J. Hu, J. He, Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles. Compos. Sci. Technol. 153, 103–110 (2017)

    Article  CAS  Google Scholar 

  31. C. Bouchelta, M.S. Medjram, O. Bertrand, J.-P. Bellat, Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrol. 82(1), 70–77 (2008)

    Article  CAS  Google Scholar 

  32. H. Seifi, S. Masoum, Electrochemical hydrogen storage performance of carbon nanosheets synthesized from bituminous coal. Int. J. Hydrogen Energy 42(51), 30145–30155 (2017)

    Article  CAS  Google Scholar 

  33. Y. Shu, K. Li, J. Song, B. Li, C. Tang, Single and competitive adsorption of Cd (II) and Pb (II) from aqueous solution by activated carbon prepared with Salix matsudana Kiodz. Water Sci. Technol. 74(12), 2751–2761 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. A. Eftekhari, P. Jafarkhani, Curly graphene with specious interlayers displaying superior capacity for hydrogen storage. J. Phys. Chem. C 117(48), 25845–25851 (2013)

    Article  CAS  Google Scholar 

  35. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108(7), 2646–2687 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Sáha, Q. Cheng, ZnO@ MOF@ PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J. Energy Chem. 35, 124–131 (2019)

    Article  Google Scholar 

  37. L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner et al., Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc. 126(5), 1308–1309 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. A.S. Oberoi, J. Andrews, A.L. Chaffee, L. Ciddor, Hydrogen storage capacity of selected activated carbon electrodes made from brown coal. Int. J. Hydrogen Energy 41(48), 23099–23108 (2016)

    Article  CAS  Google Scholar 

  39. T. Gholami, M. Salavati-Niasari, Green facile thermal decomposition synthesis, characterization and electrochemical hydrogen storage characteristics of ZnAl2O4 nanostructure. Int. J. Hydrogen Energy 42(27), 17167–17177 (2017)

    Article  CAS  Google Scholar 

  40. B. Zhang, X. Ye, W. Dai, W. Hou, Y. Xie, Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils. Chem. -A Eur. J. 12(8), 2337–2342 (2006)

    Article  CAS  Google Scholar 

  41. X. Chen, X. Gao, H. Zhang, Z. Zhou, W. Hu, G. Pan et al., Preparation and electrochemical hydrogen storage of boron nitride nanotubes. J. Phys. Chem. B 109(23), 11525–11529 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. K. Jurewicz, E. Frackowiak, F.J.A.P.A. Béguin, Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A 78(7), 981–987 (2004)

    Article  CAS  Google Scholar 

  43. M. Konni, A.S. Dadhich, S.B. Mukkamala, Impact of surface modifications on hydrogen uptake by Fe@ f-MWCNTs and Cu@ f-MWCNTs at non-cryogenic temperatures. Int. J. Hydrogen Energy 42(2), 953–959 (2017)

    Article  CAS  Google Scholar 

  44. S.A. Needham, G. Wang, K. Konstantinov, Y. Tournayre, Z. Lao, H.-K. Liu, Electrochemical performance of Co3O4–C composite anode materials. Electrochem. Solid-State Lett. 9(7), A315–A319 (2006)

    Article  CAS  Google Scholar 

  45. S. Yang, P. Gao, D. Bao, Y. Chen, L. Wang, P. Yang et al., Mechanical ball-milling preparation of mass sandwich-like cobalt–graphene nanocomposites with high electrochemical hydrogen storage ability. J. Mater. Chem. A 1(23), 6731–6735 (2013)

    Article  CAS  Google Scholar 

  46. M. Masjedi-Arani, M. Salavati-Niasari, Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrogen Energy 42(27), 17184–17191 (2017)

    Article  CAS  Google Scholar 

  47. M. Masjedi-Arani, M. Salavati-Niasari, Ultrasonic assisted synthesis of a nano-sized Co2SnO4/graphene: a potential material for electrochemical hydrogen storage application. Int. J. Hydrogen Energy 43(9), 4381–4392 (2018)

    Article  CAS  Google Scholar 

  48. T. Gholami, M. Salavati-Niasari, M. Sabet, Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 178, 14–21 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Kashan for supporting this work by Grant no. 159181/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Masoum.

Ethics declarations

Conflict of interest

The authors state no apparent competing financial interests or personal relationships that could have influenced this paper's findings.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifi, H., Masoum, S. A study on electrochemical hydrogen storage performance of bituminous-derived mesoporous carbon/zinc oxide nanocomposite. J IRAN CHEM SOC 20, 3059–3068 (2023). https://doi.org/10.1007/s13738-023-02897-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02897-5

Keywords

Navigation