Skip to main content
Log in

Influence of fluorine substitution on the molecular structure, vibrational assignment, Cu–O bond strength and biological properties by comparing copper (II) trifluorobenzoylacetonate and benzoylacetonate complexes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Bis(trifluorobenzoylacetonato) copper(II), Cu(tfba)2, was assayed for isomerism, molecular structure, spectroscopic analysis, and complete vibrational assignment using calculated results from Density Functional Theory (DFT), Natural Bond Orbital (NBO), Atoms-In-Molecules (AIM) analysis at the B3LYP level with 6-311G(d) basis set, and experimental results were obtained via observed vibrational and UV–Vis spectra. To investigate the effects of methyl groups substitution by CF3 on the structure and metal–ligand bond strength of the titled molecules, the structure and vibrational spectra of Cu(tfba)2 were compared with those of bis(benzoylacetonato) copper (II), Cu(bzac)2 using the aforementioned calculation and experimental techniques. Additionally, the calculated values were compared to reported X-ray results. The theoretical and experimental spectroscopic results showed no significant difference between the Cu–O bond strength of Cu(tfba)2 and Cu(bzac)2. In addition, the results of antibacterial activities show that both complexes could be considered potential antibacterial candidates, but Cu(tfba)2 has slightly more antibacterial activity than Cu(bzac)2. Molecular docking studies also indicate that both complexes interact with DNA spontaneously via a minor groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. R.K. Sodhi, S. Paul, Catal. Surv. From Asia. 22, 31 (2018)

    Article  CAS  Google Scholar 

  2. M. Pastusiak, P. Dobrzynski, J. Kasperczyk, A. Smola, H. Janeczek, J. Appl. Polym. Sci. 131, 40037 (2014)

    Article  Google Scholar 

  3. S. Ndwandwe, P. Tshibangu, E.D. Dikio, Int. J. Electrochem. Sci. 6, 749 (2011)

    Article  CAS  Google Scholar 

  4. A.P. Ramos, D.C. dos Reis, R.R. Pereira, L.G. Días, R.R. Goncalves, Dalton Trans. 44, 3829 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. K. Nehra, A. Dalal, A. Hooda, S. Bhagwan, R.K. Saini, B. Mari, S. Kumar, D. Singh, J. Mol. Struct. 1249, 131531 (2022)

    Article  CAS  Google Scholar 

  6. O. Korostynska, A. Mason, A. Al-Shamma’a, Int. J. Smart Sens. Intell. Syst. 5, 149 (2012)

    Google Scholar 

  7. S.N. Sampal, P.B. Thombre, V.S. Gavhane, A.S. Rajbhoj, S.T. Gaikwad, Int. J. Sci. Res. Sci. Eng. Technol. 9(5), 161 (2021)

    Google Scholar 

  8. H.M. Krishnegowda, C.S. Karthik, M.H. Marichannegowda, K. Kumara, P.J. Kudigana, M. Lingappa, P. Mallu, L.K. Neratur, J. Inorg. Chem. Acta. 484, 227 (2019)

    Article  CAS  Google Scholar 

  9. L.A. Khamidullina, I.S. Puzyrev, T.V. Glukhareva, S.A. Shatunova, P.A. Slepukhin, P.V. Dorovatovskii, Y.V. Zubavichus, V.N. Khrustalev, Z. Fan, T.A. Kalinina, A.V. Pestov, J. Mol. Struct. 1176, 515 (2019)

    Article  CAS  Google Scholar 

  10. C.P. Chinthala, S. Angappan, Appl. Organometal. Chem. 3700, 1 (2017)

    Google Scholar 

  11. R.M. Lord, J.J. Mannion, A.J. Hebden, A.E. Nako, B.D. Crossley, M.W. McMullon, F.D. Janeway, R.M. Phillips, P.C. McGowan, Chem. Med. Chem. 9, 1136 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. A. Kołodziejczak-Radzimska, T. Jesionowski, Rev. Mater. A 7, 2833 (2014)

    Google Scholar 

  13. N.G.S. Mateyise, S. Ghosh, M. Gryzenhout, E. Chiyindiko, M.M. Conradie, E.H.G. Langner, J. Conradie. Polyhedron. 205, 115290 (2021)

    Article  CAS  Google Scholar 

  14. M.K. Hema, C.S. Karthik, K.J. Pampa, P. Mallu, N.K. Lokanath, J. Mol. Struct. 1243, 130774 (2021)

    Article  CAS  Google Scholar 

  15. S.A. Gromilov, I.A. Biadina, J. Struct. Chem. 45, 1031 (2004)

    Article  CAS  Google Scholar 

  16. L. David, C. Craciun, O. Cozar, V. Chis, C. Agut, D. Rusu, M. Rusu, J. Mol. Struct. 563, 573 (2001)

    Article  Google Scholar 

  17. B. Staniszewski, W. Urbaniak, Chem. Papers. 63, 212 (2009)

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian Inc.,Wallingford CT, (2009)

  19. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  21. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. GaussView 4. 1. 2, Gaussian Inc., Pittsburg, PA, (2006).

  23. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, (2001).

  24. F.W. Biegler-King, J. Schnbohm, D. Bayles, J. Comp. Chem. 22, 545 (2001)

    Article  Google Scholar 

  25. R.W.F. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)

    Book  Google Scholar 

  26. L. V. Skripnikov, Chemissian version 4.43, visualization computer program, www. Chemissian. Com. (2016).

  27. R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, J. Comput. Chem 28(6), 1145 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. M. Vakili, S.F. Tayyari, M. Hakimi-Tabar, A.-R. Nekoei, S. Kadkhodaei, J. Mol. Struct. 1058, 308 (2014)

    Article  CAS  Google Scholar 

  29. S.F. Tayyari, M. Vakili, A.-R. Nekoei, H. Rahemi, Y.A. Wang, Spectrochim Acta. 66, 626 (2007)

    Article  Google Scholar 

  30. R. Afzali, M. Vakili, A.-R. Nekoei, S.F. Tayyari, J. Mol. Struct. 1076, 262 (2014)

    Article  CAS  Google Scholar 

  31. S.F. Tayyari, F. Milani-Nejad, H. Rahemi, Spectrochim Acta. A 58, 1669 (2002)

    Article  Google Scholar 

  32. R. Afzali, M. Vakili, S.F. Tayyari, H. Eshghi, A.-R. Nekoei, Spectrochim Acta. A 117, 284 (2014)

    Article  CAS  Google Scholar 

  33. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 285, 170 (1998)

    Article  CAS  Google Scholar 

  34. V. Darugar, M. Vakili, R. Afzali, S.F. Tayyari, Org. Chem. Res. 3, 61 (2017)

    Google Scholar 

  35. S. Layek, S. Kumari, B. Agrahari, R. Ganguly, D.D. Pathak, Inorgan. Chimica. Acta. 453, 735–741 (2016)

    Article  CAS  Google Scholar 

  36. Ö. Tamer, D. Avcı, Y. Atalay, Spectrochim. Acta. A 136, 644 (2015)

    Article  CAS  Google Scholar 

  37. S. Seyedkatouli, M. Vakili, S.F. Tayyari, R. Afzali, J. Mol. Struct. 1160, 107 (2018)

    Article  CAS  Google Scholar 

  38. S.F. Tayyari, T. Bakhshi, S.J. Mahdizadeh, S. Mehrani, R.E. Sammelson, J. Mol. Struct. 938, 76 (2009)

    Article  CAS  Google Scholar 

  39. E.B. Wilson Jr., Phys. Rev. 45, 706 (1934)

    Article  CAS  Google Scholar 

  40. A.-R. Nekoei, S.F. Tayyari, M. Vakili, S. Holakoei, A.H. Hamidian, R.E. Sammelson, J. Mol. Struct. 932, 112 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Ferdowsi University of Mashhad-Iran for the financial support during this research, Grant No. 45085.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MHT contributed to investigation, data curation, visualization, validation, and writing—original draft. MV contributed to supervision, methodology, writing and editing, responsible for IR, Raman, and UV spectra. MRH contributed to conceptualization, supervision, and editing. VD contributed to writing and editing. SFT contributed to writing—review & editing.

Corresponding author

Correspondence to Mohammad Vakili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4850 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakimi-Tabar, M., Vakili, M., Housaindokht, M.R. et al. Influence of fluorine substitution on the molecular structure, vibrational assignment, Cu–O bond strength and biological properties by comparing copper (II) trifluorobenzoylacetonate and benzoylacetonate complexes. J IRAN CHEM SOC 20, 2949–2961 (2023). https://doi.org/10.1007/s13738-023-02890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02890-y

Keywords

Navigation