Skip to main content
Log in

An insight into the influence of chlorine position on the ion-solvation and ion-association behaviour of pyridinium-based ionic liquids in alcohol-water mixed media and temperatures

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A comprehensive analysis of the transport properties of solutions of three pyridinium-based ionic liquids, 2-chloro-1-methylpyridinium iodide [o-mpy][I]; 3-chloro-1-methylpyridinium iodide [m-mpy][I], and 4-chloro-1-methylpyridinium iodide, [p-mpy][I], has been derived utilising conductometric data at temperatures ranging from 298.15 to 313.15 K (in steps of 5 K) in 10%, 30%, and 50% W/W mixtures of MeOH–H2O and DMF–H2O. On the basis of conductometric data, the limiting molar conductance and ion-pair association were evaluated and re-evaluated using a computer-programmed Fuoss-Edelson strategy, and the acquired results were evaluated in terms of the influence of temperature, the solvent's nature, ion-ion, ion–solvent interactions, and substituent positions on the transport characteristics. Using conductance-based data, the \(\Lambda_{ \circ } \eta_{ \circ }\),\({R}_{H}\), activation energy of the transport process and association's thermodynamic functions values of these ILs were computed and thoroughly analysed. Surprisingly, the "positioning" of the substituent (Cl) in the ortho, meta, or para-position had a minor impact on the ion pair association of three ILs in the chosen solvents, with the \({K}_{A}\) values for para-substituted [p-mpy][I] being about 1.07-fold lower than [m-mpy][I] and [o-mpy][I], respectively. This article's results supplied critical data about the transport properties of pyridinium-based ionic liquids, which is essential and beneficial for the diverse fields of such ionic liquids that are currently being utilised.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

[o-mpy][I]:

2-Chloro-1-methylpyridinium iodide (mg)

[m-mpy][I]:

3-Chloro-1-methylpyridinium iodide (mg)

[p-mpy][I]:

4-Chloro-1-methylpyridinium iodide (ml)

MeOH:

Methanol (ml)

DMF:

N,N-dimethylformamide (ml)

\(\varepsilon\) :

The dielectric constants (Unitless)

\(d\) :

The density (g cm− 3)

\(\eta_{ \circ }\) :

The viscosity (\(cP\))

\(Ks\) :

The specific conductances (S cm− 1)

\(\Lambda\) :

The molar conductance (S mol− 1 cm2)

\(\Lambda_{ \circ }\) :

The limiting molar conductance (S mol− 1 cm2)

\({\uplambda }_{ \pm }^{ \circ }\) :

The limiting ionic conductance of cation/anion (S mol− 1 cm2)

\(D_{o}\) :

The limiting diffusion coefficients (cm2 sec− 1)

\({K}_{\mathrm{A}}\) :

The association constant (mol dm− 3)

\(F\) :

The Faraday constant (C mol− 1)

Δ:

The Onsager reciprocal relations (\(\mathrm{Slope},\) Unitless)

\({\gamma }_{\pm }\) :

The mean ion activity coefficients (Unitless)

A :

The ion size parameter of the closet approach (Å)

μ :

The ionic strength (mol m3))

Z :

The valence of cation (Unitless)

A :

The empirical constant (Unitless)

B :

The empirical constant (Unitless)

\(\Lambda_{ \circ } \eta_{ \circ }\) :

The Walden product (S mol− 1 cm2 cP)

\({R}_{\mathrm{H}}\) :

The hydrodynamic radii (\(\mathrm{nm}\))

\(E\mathrm{a}\) :

The activation energy of the transfer process (KJ mol− 1)

\({\Delta }G_{{\text{A}}}^{^\circ }\) :

The standard free energy of association (KJ mol− 1)

\({\Delta }H_{{\text{A}}}^{^\circ }\) :

The standard enthalpy of association (KJ mol− 1)

\({\Delta }S_{{\text{A}}}^{^\circ }\) :

The standard entropy of association (KJ mol− 1)

R :

The gas constant (8.314) (J mol− 1 K− 1)

References

  1. I. Bandrés, D.F. Montaño, I. Gascón, P. Cea, C. Lafuente, Electrochim. Acta 55, 2252 (2010). https://doi.org/10.1016/j.electacta.2009.11.073

    Article  CAS  Google Scholar 

  2. Q.-S. Liu, P.-P. Li, U. Welz-Biermann, J. Chen, X.-X. Liu, J. Chem. Thermodyn. 66, 88 (2013). https://doi.org/10.1016/j.jct.2013.06.008

    Article  CAS  Google Scholar 

  3. I.V. Voroshylova, S.R. Smaga, E.V. Lukinova, V.V. Chaban, O.N. Kalugin, J. Mol. Liq. 203(2015), 7 (2015). https://doi.org/10.1016/j.molliq.2014.12.028

    Article  CAS  Google Scholar 

  4. M. Ziaee, B. Jamehbozorg, R. Sadeghi, J. Iran. Chem. Soc. 19, 2053 (2022). https://doi.org/10.1007/s13738-021-02436-0

    Article  CAS  Google Scholar 

  5. H. Zhang, X. Cui, P. Li, T. Feng, H. Feng, J. Mol. Liq. 365, 120193 (2022). https://doi.org/10.1016/j.molliq.2022.120193

    Article  CAS  Google Scholar 

  6. Z. Khaknejad, N. Mehdipour, H. Eslami, Chem. Phys. Chem 21, 1134 (2020). https://doi.org/10.1002/cphc.202000197

    Article  CAS  PubMed  Google Scholar 

  7. A.S. Padvi, S.D. Dalal, Current Green Chemistry 7, 105 (2020). https://doi.org/10.2174/2213346107666200115153051

    Article  CAS  Google Scholar 

  8. Q. Zeng, Z. Song, H. Qin, H. Cheng, L. Chen, M. Pan, Y. Heng, Z. Qi, Catal. Today 339, 113 (2020). https://doi.org/10.1016/j.cattod.2019.03.052

    Article  CAS  Google Scholar 

  9. A. Pipertzis, G. Papamokos, O. Sachnik, S. Allard, U. Scherf, G. Floudas, Macromolecules 54, 4257 (2021). https://doi.org/10.1021/acs.macromol.1c00436

    Article  CAS  Google Scholar 

  10. D. Rauber, A. Hofmann, F. Philippi, C.W.M. Kay, T. Zinkevich, T. Hanemann, R. Hempelmann, Appl. Sci. 11, 5679 (2021)

    Article  CAS  Google Scholar 

  11. R. Tomaš, Croat. Chem. Acta 94, 83 (2021). https://doi.org/10.5562/cca3850

    Article  CAS  Google Scholar 

  12. R. Arif, A. Shaheen, Chem. Phys. Lipids 243, 105176 (2022). https://doi.org/10.1016/j.chemphyslip.2022.105176

    Article  CAS  PubMed  Google Scholar 

  13. S. Khazalpour, M. Yarie, E. Kianpour, A. Amani, S. Asadabadi, J.Y. Seyf, M. Rezaeivala, S. Azizian, M.A. Zolfigol, J. Iran. Chem. Soc. 17, 1775 (2020). https://doi.org/10.1007/s13738-020-01901-6

    Article  CAS  Google Scholar 

  14. P. Velho, C. Lopes, E.A. Macedo, Fluid Ph. Equilibria (2023). https://doi.org/10.1016/j.fluid.2022.113717

    Article  Google Scholar 

  15. H. Sadighian, E. Ahmadi, Z. Mohamadnia, Carbohydr. Polym. 302, 120406 (2023). https://doi.org/10.1016/j.carbpol.2022.120406

    Article  CAS  PubMed  Google Scholar 

  16. G. Choudhary, J. Dhariwal, M. Saha, S. Trivedi, M.K. Banjare, R. Kanaoujiya, K. Behera, Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-02325468-w

    Article  Google Scholar 

  17. J. Vila, L.M. Varela, O. Cabeza, Electrochim. Acta 52, 7413 (2007). https://doi.org/10.1016/j.electacta.2007.06.044

    Article  CAS  Google Scholar 

  18. H. Wang, J. Wang, S. Zhang, Y. Pei, K. Zhuo, Chem. Phys. Chem 10, 2516 (2009). https://doi.org/10.1002/cphc.200900438

    Article  CAS  PubMed  Google Scholar 

  19. A.R. Koh, B. Hwang, K.C. Roh, K. Ki, Phys. Chem. Chem. Phys. 16, 15146 (2014). https://doi.org/10.1039/C4CP00949E

    Article  CAS  PubMed  Google Scholar 

  20. S. Thawarkar, N.D. Khupse, A. Kumar, Phys. Chem. Chem. Phys. 17, 475 (2015). https://doi.org/10.1039/C4CP04591B

    Article  CAS  PubMed  Google Scholar 

  21. M. Bešter-Rogač, M.V. Fedotova, S.E. Kruchinin, M. Klähn, Phys. Chem. Chem. Phys. 18, 28594 (2016). https://doi.org/10.1039/C6CP05010G

    Article  CAS  PubMed  Google Scholar 

  22. O. Zhuravlev, Russ. J. Phys. Chem. A 95, 298 (2021). https://doi.org/10.1134/S0036024421020308

    Article  CAS  Google Scholar 

  23. N.S.Y. Abdolla, G.M. Elmanfe, S.E. Taher, F. El-Dossoki, Egypt. J. Chem. (2022). https://doi.org/10.21608/ejchem.2022.158808.6863

    Article  Google Scholar 

  24. A. Boruń, J. Mol. Liq. 276, 214 (2019). https://doi.org/10.1016/j.molliq.2018.11.140

    Article  CAS  Google Scholar 

  25. M.T. Garcia, I. Ribosa, L. Perez, A. Manresa, F. Comelles, Langmuir 29, 2536 (2013). https://doi.org/10.1021/la304752e

    Article  CAS  PubMed  Google Scholar 

  26. P.Y.S. Lin, N. Allan, R.B. Leron, M.H. Li, J. Chem. Thermodyn. 42, 994 (2010). https://doi.org/10.1016/j.jct.2010.03.017

    Article  CAS  Google Scholar 

  27. K. Zhuo, Y. Chen, J. Chen, G. Bai, J. Wang, Phys. Chem. Chem. Phys. 13, 14542 (2011). https://doi.org/10.1039/C1CP20948E

    Article  CAS  PubMed  Google Scholar 

  28. M. Bešter-Rogač, A. Stoppa, J. Hunger, G. Hefter, R. Buchner, Phys. Chem. Chem. Phys. 13, 17588 (2011). https://doi.org/10.1039/C1CP21371G

    Article  PubMed  Google Scholar 

  29. O. Zhuravlev, Russ. J. Phys. Chem. A 95, 2503 (2021). https://doi.org/10.1134/S0036024421120244

    Article  CAS  Google Scholar 

  30. J.Y. Li, C. Lee, C.-Y. Chen, W.L. Lee, R. Ma, C.G. Wu, Inorg. Chem. 54, 10483 (2015). https://doi.org/10.1021/acs.inorgchem.5b01967

    Article  CAS  PubMed  Google Scholar 

  31. E.C.S. Brenelli, P.J.S. Moran, J. Chem. Soc. Perkin Trans. 2, 1219 (1989). https://doi.org/10.1039/P29890001219

    Article  Google Scholar 

  32. R.H. Stokes, R. Mills, Viscosity of electrolytes and related properties (Pergamon Press, New York, 1965)

    Google Scholar 

  33. E.A. Gomaa, M.A. Tahoon, A. Shokr, Chem Data Coll (2016). https://doi.org/10.1016/j.cdc.2016.06.005

    Article  Google Scholar 

  34. E.A.G.R.T. Rashad, Chem. Sci. J. 9, 1 (2018). https://doi.org/10.4172/2150-3494.1000187

    Article  Google Scholar 

  35. F.I. El-Dossoki, N.E.Y. Abdallh, S.E.T. Elmasly, J. Mol. Liq. 163, 135 (2011). https://doi.org/10.1016/j.molliq.2011.08.009

    Article  CAS  Google Scholar 

  36. H. Shehata, H. Abdelbary, M. Baker, M. Hafiz, M. Emara, J. Fac. Educ. 19, 451 (1994)

    Google Scholar 

  37. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1995)

    Google Scholar 

  38. A. Boruń, C. Fernandez, A. Bald, Int. J. Electrochem. Sci. 10, 2120 (2015)

    Article  Google Scholar 

  39. A. Boruń, J. Mol. Liq. 240, 717 (2017). https://doi.org/10.1016/j.molliq.2017.05.039

    Article  CAS  Google Scholar 

  40. N.H. El-Hammamy, H.A. El-Araby, Int. J. Innov. Sci. Res. 29, 184 (2017)

    Google Scholar 

  41. L.R.F. Allen, J. Bard, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  42. C.B. Susha, J. Ishwara Bhat, Indian J. Chem. 35, 1052 (1996)

    Google Scholar 

  43. F.I. El-Dossoki, A.S.Y. Noreldin, E.A. Gomaa, O.K. Hamza, SN Applied Sciences 2, 690 (2020). https://doi.org/10.1007/s42452-020-2504-y

    Article  CAS  Google Scholar 

  44. P.W. Atkins, Physical Chemistry (W. H. Freeman, New York, 1986)

    Google Scholar 

  45. H. Doe, T. Kitagawa, K. Sasabe, J. Phys. Chem. 88, 3341 (1984). https://doi.org/10.1021/j150659a041

    Article  CAS  Google Scholar 

  46. M.F. Bakr, A.A.A. El-Wahab Mohamed, J. Chin. Chem. Soc. 46, 899 (1999). https://doi.org/10.1002/jccs.199900122

    Article  CAS  Google Scholar 

  47. S. Harned, B. Herbert, B. Owen, J. Chem. Educ. (1944). https://doi.org/10.1021/ed021p363.1

    Article  Google Scholar 

  48. W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  49. A. Sinha, M.N. Roy, Phys. Chem. Liq. 45, 67 (2007). https://doi.org/10.1080/00319100601153830

    Article  CAS  Google Scholar 

  50. R.M. Fuoss, D. Edelson, J. Am. Chem. Soc. 73, 767 (1951). https://doi.org/10.1021/ja01145a090

    Article  Google Scholar 

  51. J. Kielland, J. Am. Chem. Soc. 59, 1675 (1937). https://doi.org/10.1021/ja01288a032r

    Article  CAS  Google Scholar 

  52. F.I. El-Dossoki, J. Mol. Liq. 151, 1 (2010). https://doi.org/10.1016/j.molliq.2009.10.007

    Article  CAS  Google Scholar 

  53. K.C. Rao, S.B. Rao, Indian J. Chem. 28A, 102 (1989)

    CAS  Google Scholar 

  54. F.A.R.M. Fuoss, Electrolytic Conductance (Interscience Publishers, New York, 1959)

    Google Scholar 

  55. H. Shehata, J. Indian Chem. Soc. 70, 719 (1993)

    CAS  Google Scholar 

  56. A. Afandak, H. Eslami, J. Phys. Chem. B 121, 7699 (2017). https://doi.org/10.1021/acs.jpcb.7b06039

    Article  CAS  PubMed  Google Scholar 

  57. Y. Lingscheid, S. Arenz, R. Giernoth, Chem. Phys. Chem. 13, 261 (2012). https://doi.org/10.1002/cphc.201100622

    Article  CAS  PubMed  Google Scholar 

  58. B.L. Bhargava, S. Balasubramanian, J. Am. Chem. Soc. (JACS) 128, 10073 (2006). https://doi.org/10.1021/ja060035k

    Article  CAS  Google Scholar 

  59. M. Gliege, W. Lin, Y. Xu, M.-T. Chen, C. Whitney, R. Gunckel, L. Dai, J. Phys. Chem. B 126, 1115 (2022). https://doi.org/10.1021/acs.jpcb.1c05595

    Article  CAS  PubMed  Google Scholar 

  60. P. Walden, Z. Anorg, Allg. Chem. 113, 85 (1920). https://doi.org/10.1002/zaac.19201130107

    Article  CAS  Google Scholar 

  61. W. Xu, E.I. Cooper, C.A. Angell, J. Phys. Chem. B 107, 6170 (2003). https://doi.org/10.1021/jp0275894

    Article  CAS  Google Scholar 

  62. R.A. Robinson, Stock Image Electrolyte Solutions (Butterworth & Co Ltd., London, 1959)

    Google Scholar 

  63. M. Ezz-Elarab, H. Shehata, J. Sci. Phys. Sci. 4, 51 (1992)

    Google Scholar 

  64. H.A. Shehata, Arab J. Sci. Eng. 19(4A), 679 (1994)

    CAS  Google Scholar 

  65. A. Szejgis, A. Bald, J. Gregorowicz, M. Żurada, J. Mol. Liq. 79(1999), 123 (1999). https://doi.org/10.1016/S0167-7322(98)00107-X

    Article  CAS  Google Scholar 

  66. J. Ishwara Bhat, H.R. Shivakumar, J. Mol. Liq. 111, 101 (2004). https://doi.org/10.1016/j.molliq.2003.12.005

    Article  CAS  Google Scholar 

  67. U.N. Dash, J.R. Mahapatra, B. Lal, J. Mol. Liq. 124, 13 (2006). https://doi.org/10.1016/j.molliq.2005.04.002

    Article  CAS  Google Scholar 

  68. F. Corradini, G. Franchini, A. Marchetti, M. Tagliazucchi, L. Tassi, G. Tosi, J. Chem. Soc. Faraday Trans. 89, 3043 (1993). https://doi.org/10.1039/FT9938903043

    Article  CAS  Google Scholar 

  69. B.D. Siti Barman, M.N. Roy, Ind. J. Adv. Chem. Sci. 5, 160 (2017). https://doi.org/10.22607/IJACS.2017.503008

    Article  Google Scholar 

  70. A.N. Soriano, A.M. Agapito, L.J.L.I. Lagumbay, A.R. Caparanga, M.-H. Li, J. Taiwan Inst. Chem. Eng. 42, 258 (2011). https://doi.org/10.1016/j.jtice.2010.06.003

    Article  CAS  Google Scholar 

  71. A.V. Belov, S.N. Solov’ev, Russ. J. Phys. Chem. A 88, 1351 (2014). https://doi.org/10.1134/S0036024414080068

    Article  CAS  Google Scholar 

  72. M. Vraneš, Z. Kinart, T.T. Borović, S. Papović, R. Tomaš, J. Mol. Liq. 372, 120763 (2023). https://doi.org/10.1016/j.molliq.2022.120763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For all the resources, programmes, and facilities required to accomplish this work, the authors are grateful to Tobruk University in Libya and the University of Leicester in the United Kingdom.

Author information

Authors and Affiliations

Authors

Contributions

The experimental component is made in part by NA, and in part by FD and TA. The discussion and analysis of the obtained results have been done by Dr. A and Dr. D. The main manuscript text was written by Dr. N. Abdolla, and the final manuscript draught was reviewed and approved by all authors.

Corresponding author

Correspondence to Noreldin S. Y. Abdolla.

Ethics declarations

Conflict of interest

The author asserts that they have no recognised competing financial interests or personal relationships that could have appeared to influence the work presented in this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1854 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolla, N.S.Y., Aeyad, T.Y.M. & El-Dossiki, F.I. An insight into the influence of chlorine position on the ion-solvation and ion-association behaviour of pyridinium-based ionic liquids in alcohol-water mixed media and temperatures. J IRAN CHEM SOC 20, 2217–2232 (2023). https://doi.org/10.1007/s13738-023-02820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02820-y

Keywords

Navigation