Skip to main content
Log in

Nitrate reduction using Fe3O4-MWCNTs@PEI-Ag nanocomposite as a reusable catalyst

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, Multi-walled carbon nanotubes (MWNTs) were modified with carboxylic acid functional groups, and then were decorated with Fe3O4 nanoparticles. In the next step, polyethyleneimine (PEI) was loaded on Fe3O4-MWCNTs to supply an appropriate platform for coordination and in situ reduction in silver ions to create Fe3O4-MWCNTs@PEI-Ag nanocomposite. The morphology and structural features of the Fe3O4-MWCNTs@PEI-Ag hybrid material was characterized by various techniques such as Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and thermogravimetric analysis (TGA). Fe3O4-MWCNTs@PEI-Ag was used as an efficient catalyst for nitrate reduction in water. Effects of the catalyst dosage, pH, temperature, and reaction time were studied on the reduction in nitrate by Taguchi orthogonal array design. Under the optimized conditions including 0.02 mg of catalyst at pH 7.0, 85% of nitrate reduction was achieved at 35 °C after 45 min. The catalyst was magnetically recoverable and recycled up to five runs without considerable loss of its efficiency.

Graphical abstract

Fe3O4-MWCNTs@PEI-Ag was used as a heterogeneous catalyst for reduction in nitrate to nitrite in aqueous solution. The nanocatalyst showed high efficiency, because the MWCNTs were functionalized by PEI, which supplied a suitable platform for coordination and in situ reduction in silver ions. Under the optimized conditions including 0.02 mg of catalyst at pH 7.0, 85% of nitrate reduction was achieved at 35 °C after 45 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. La Sorella, G. Strukul, A. Scarso, Green Chem. 17, 644 (2015)

    Article  Google Scholar 

  2. K. Zheng, M.I. Setyawati, T.-P. Lim, D.T. Leong, J. Xie, ACS Nano 10, 7934 (2016)

    Article  CAS  Google Scholar 

  3. A.H. Alshehri, M. Jakubowska, A. Młożniak, M. Horaczek, D. Rudka, C. Free, J.D. Carey, A.C.S. Appl, Mater. Interfaces 4, 7007 (2012)

    Article  CAS  Google Scholar 

  4. D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, J.Y. Lee, Angew. Chemie Int. Ed. 51, 2409 (2012)

    Article  CAS  Google Scholar 

  5. S. Sarina, E.R. Waclawik, H. Zhu, Green Chem. 15, 1814 (2013)

    Article  CAS  Google Scholar 

  6. K. Fuku, R. Hayashi, S. Takakura, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chemie Int. Ed. 52, 7446 (2013)

    Article  CAS  Google Scholar 

  7. H. Azizi-Toupkanloo, M. Karimi-Nazarabad, G.-R. Amini, A. Darroudi, Sol. Energy 196, 653 (2020)

    Article  CAS  Google Scholar 

  8. K.S. Shin, J.-Y. Choi, C.S. Park, H.J. Jang, K. Kim, Catal. Letters 133, 1 (2009)

    Article  CAS  Google Scholar 

  9. M. Horecha, E. Kaul, A. Horechyy, M. Stamm, J. Mater. Chem. A 2, 7431 (2014)

    Article  CAS  Google Scholar 

  10. B. Naik, V.S. Prasad, N.N. Ghosh, Powder Technol. 232, 1 (2012)

    Article  CAS  Google Scholar 

  11. N.H. Khdary, M.A. Ghanem, J. Mater. Chem. 22, 12032 (2012)

    Article  CAS  Google Scholar 

  12. S. Tang, S. Vongehr, X. Meng, J. Phys. Chem. C 114, 977 (2010)

    Article  CAS  Google Scholar 

  13. J. Liu, J. Wang, Z. Zhu, L. Li, X. Guo, S. F. Lincoln, and R. K. Prud’homme, AIChE J. 60, 1977 (2014).

  14. L.J. Puckett, Environ. Sci. Technol. 29, 408A (1995)

    Article  CAS  Google Scholar 

  15. K.-D. Vorlop, T. Tacke, Chemieingenieurtechnik 61, 836 (1989)

    CAS  Google Scholar 

  16. S. Hörold, T. Tacke, K. Vorlop, Environ. Technol. 14, 931 (1993)

    Article  Google Scholar 

  17. S. Hörold, K.-D. Vorlop, T. Tacke, M. Sell, Catal. Today 17, 21 (1993)

    Article  Google Scholar 

  18. U. Prüsse, M. Hähnlein, J. Daum, K.-D. Vorlop, Catal. Today 55, 79 (2000)

    Article  Google Scholar 

  19. A. Pintar, J. Batista, J. Levec, Catal. Today 66, 503 (2001)

    Article  CAS  Google Scholar 

  20. I. Mikami, Y. Sakamoto, Y. Yoshinaga, T. Okuhara, Appl. Catal. B Environ. 44, 79 (2003)

    Article  CAS  Google Scholar 

  21. R. Rodríguez, C. Pfaff, L. Melo, P. Betancourt, Catal. Today 107, 100 (2005)

    Article  Google Scholar 

  22. S. Karski, I. Witońska, J. Rogowski, J. Gołuchowska, J. Mol. Catal. A Chem. 240, 155 (2005)

    CAS  Google Scholar 

  23. B. Yoon, H.-B. Pan, C.M. Wai, J. Phys. Chem. C 113, 1520 (2009)

    Article  CAS  Google Scholar 

  24. M. Gopiraman, S.G. Babu, Z. Khatri, W. Kai, Y.A. Kim, M. Endo, R. Karvembu, I.S. Kim, Carbon N. Y. 62, 135 (2013)

    Article  CAS  Google Scholar 

  25. S. J. Tabatabaei Rezaei, H. Khorramabadi, A. Hesami, A. Ramazani, V. Amani, and R. Ahmadi, Ind. Eng. Chem. Res. 56, 12256 (2017).

  26. M. Karimi-Nazarabad, E. K. Goharshadi, R. Mehrkhah, and M. Davardoostmanesh, Sep. Purif. Technol. 279, 119788 (2021).

  27. M. Karimi-Nazarabad and H. Azizi-Toupkanloo, J. Iran. Chem. Soc. 1 (2021).

  28. M.R. Nabid, Y. Bide, S.J.T. Rezaei, Appl. Catal. A Gen. 406, 124 (2011)

    Article  CAS  Google Scholar 

  29. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev. 111, 3036 (2011)

    Article  CAS  Google Scholar 

  30. D. Wang, D. Astruc, Chem. Rev. 114, 6949 (2014)

    Article  CAS  Google Scholar 

  31. S. Ansari, A. Khorshidi, S. Shariati, RSC Adv. 10, 3554 (2020)

    Article  Google Scholar 

  32. H. Wu, H. Shi, H. Zhang, X. Wang, Y. Yang, C. Yu, C. Hao, J. Du, H. Hu, S. Yang, Biomaterials 35, 5369 (2014)

    Article  CAS  Google Scholar 

  33. M.R. Nabid, Y. Bide, E. Aghaghafari, S.J.T. Rezaei, Catal. Letters 144, 355 (2014)

    Article  CAS  Google Scholar 

  34. A. Gasnier, M.L. Pedano, F. Gutierrez, P. Labbé, G.A. Rivas, M.D. Rubianes, Electrochim. Acta 71, 73 (2012)

    Article  CAS  Google Scholar 

  35. G. Guo, F. Qin, D. Yang, C. Wang, H. Xu, S. Yang, Chem. Mater. 20, 2291 (2008)

    Article  CAS  Google Scholar 

  36. X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Energy Fuels 16, 1463 (2002)

    Article  CAS  Google Scholar 

  37. D. Dikio, N. Bixa, Int J Appl Chem 7, 35 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

Partial support of this study by research council of university of Guilan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Khorshidi or Sara Ansari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, A., Ansari, S. & Shariati, S. Nitrate reduction using Fe3O4-MWCNTs@PEI-Ag nanocomposite as a reusable catalyst. J IRAN CHEM SOC 19, 3473–3480 (2022). https://doi.org/10.1007/s13738-022-02540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02540-9

Keywords

Navigation