Skip to main content
Log in

Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The work demonstrated that waste sugarcane leaves were recycled by transforming them into activated carbon form and were employed for adsorption of crystal violet (CV) dyes from water bodies. Sugarcane leaves were ultrasonically treated with concentrated H2SO4 as an impregnating reagent and further with microwave irradiation for 15 min. The lustrous porous SLAC adsorbent material was subjected to characterized through advanced techniques like FTIR, XRD, BET, Raman, SEM, XPS, and EDAX analysis, to support and confirm the successful preparation of adsorbent and adsorption process. SLAC adsorbent shows the glowing porous and amorphous nature with fascinating specific surface area 730.59 m2 g−1. The porous and high surface SLAC adsorbent was utilized through batch adsorption technique for assessment and optimization of physico-chemical parameters viz. pH of working solution, SLAC amount, CV dye concentration, contact period, shaking speed, and surrounding temperature. At optimized conditions as pH 9.0 and 0.45 g SLAC significantly removed 99.81 ± 0.15% of toxic dye. Moreover, the equilibrium was attained within 60 min at a shaking speed of 170 rpm. The experimental data follows Langmuir adsorption isotherm with monolayer adsorption capacity 149.25 mg g−1. Kinetic study reveals that the adsorption process follows the pseudo-second-order kinetic model and thermodynamic study represents that the process is spontaneous and endothermic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Goswami, P. Phukan, J. Environ. Chem. Eng. 5, 3508 (2017). https://doi.org/10.1016/j.jece.2017.07.016

    Article  CAS  Google Scholar 

  2. S.A. Patil, U.P. Suryawanshi, N.S. Harale, S.K. Patil, M.M. Vadiyar, M.N. Luwang, M.A. Anuse, J.H. Kim, S.S. Kolekar, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1849648

    Article  Google Scholar 

  3. S. Rangabhashiyam, N. Anu, M. S. Giri Nandagopal, N. Selvaraju, J. Environ. Chem. Eng. 2, 398 (2014). https://doi.org/10.1016/j.jece.2014.01.014.

  4. R. Ullah, J. Sun, A. Gul, S. Bai, J. Environ. Chem. Eng. 8, 103852 (2020). https://doi.org/10.1016/j.jece.2020.103852

    Article  CAS  Google Scholar 

  5. A. Raj, B. Bethi, S.H. Sonawane, J. Environ. Chem. Eng. 6, 5311 (2018). https://doi.org/10.1016/j.jece.2018.08.016

    Article  CAS  Google Scholar 

  6. E.S. Mansor, H. Abdallah, A.M. Shaban, J. Environ. Chem. Eng. 8, 103706 (2020). https://doi.org/10.1016/j.jece.2020.103706

    Article  CAS  Google Scholar 

  7. Y.-R. Huang, Y. Kong, H.-Z. Li, X.-M. Wei, Environ. Technol Innovation 18, 100780 (2020). https://doi.org/10.1016/j.eti.2020.100780

    Article  Google Scholar 

  8. G.D. Kore, S.A. Patil, M.A. Anuse, S.S. Kolekar, J. Radioanal. Nucl. Chem. 310, 329 (2016). https://doi.org/10.1007/s10967-016-4857-7

    Article  CAS  Google Scholar 

  9. M.K. Mbacké, C. Kane, N.O. Diallo, C.M. Diop, F. Chauvet, M. Comtat, T. Tzedakis, J. Environ. Chem. Eng. 4, 4001 (2016). https://doi.org/10.1016/j.jece.2016.09.002

    Article  CAS  Google Scholar 

  10. S. Shanmugam, P. Ulaganathan, S. Sivasubramanian, S. Esakkimuthu, S. Krishnaswamy, S. Subramaniam, J. Environ. Chem. Eng. 5, 222 (2017). https://doi.org/10.1016/j.jece.2016.11.044

    Article  CAS  Google Scholar 

  11. A.V. Mohod, S.P. Hinge, R.S. Raut, M.V. Bagal, D. Pinjari, J. Environ. Chem. Eng. 6, 574 (2018). https://doi.org/10.1016/j.jece.2017.12.053

    Article  CAS  Google Scholar 

  12. S.A. Patil, P.D. Kumbhar, S.K. Patil, M.M. Vadiyar, U.P. Suryawanshi, C.L. Jambhale, M.A. Anuse, J.H. Kim, S.S. Kolekar, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1734197

    Article  Google Scholar 

  13. M.E. Mahmoud, G.M. Nabil, M.A. Khalifa, N.M. El-Mallah, H.M. Hassouba, J. Environ. Chem. Eng. 7, 103009 (2019). https://doi.org/10.1016/j.jece.2019.103009

    Article  CAS  Google Scholar 

  14. P. Rai, R.K. Gautam, S. Banerjee, V. Rawat, M.C. Chattopadhyaya, J. Environ. Chem. Eng. 3, 2281 (2015). https://doi.org/10.1016/j.jece.2015.08.017

    Article  CAS  Google Scholar 

  15. M.K. Satapathy, P. Das, J. Environ. Chem. Eng. 2, 708 (2014). https://doi.org/10.1016/j.jece.2013.11.012

    Article  CAS  Google Scholar 

  16. H.-O. Chahinez, O. Abdelkader, Y. Leila, H.N. Tran, Environ. Technol Innovation 19, 100872 (2020). https://doi.org/10.1016/j.eti.2020.100872

    Article  Google Scholar 

  17. S.R. Patil, S.S. Sutar, J.P. Jadhav, Environ. Technol Innovation 18, 100648 (2020). https://doi.org/10.1016/j.eti.2020.100648

    Article  Google Scholar 

  18. A.S. Sartape, S.A. Patil, S.K. Patil, S.T. Salunkhe, S.S. Kolekar, Desalin. Water Treat. 53, 99 (2015). https://doi.org/10.1080/19443994.2013.839404

    Article  CAS  Google Scholar 

  19. N. B. Singh, G. Nagpal, S. Agrawal, Rachna, Environ. Technol. Innovation11, 187 (2018). https://doi.org/10.1016/j.eti.2018.05.006.

  20. S. Bentahar, A. Dbik, M.E. Khomri, N.E. Messaoudi, A. Lacherai, J. Environ. Chem. Eng. 5, 5921 (2017). https://doi.org/10.1016/j.jece.2017.11.003

    Article  CAS  Google Scholar 

  21. W. Astuti, A. Chafidz, E.T. Wahyuni, A. Prasetya, I.M. Bendiyasa, A.E. Abasaeed, J. Environ. Chem. Eng. 7, 103262 (2019). https://doi.org/10.1016/j.jece.2019.103262

    Article  CAS  Google Scholar 

  22. R. Fabryanty, C. Valencia, F.E. Soetaredjo, J.N. Putro, S.P. Santoso, A. Kurniawan, Y.-H. Ju, S. Ismadji, J. Environ. Chem. Eng. 5, 5677 (2017). https://doi.org/10.1016/j.jece.2017.10.057

    Article  CAS  Google Scholar 

  23. C.O. Aniagor, M.C. Menkiti, J. Environ. Chem. Eng. 6, 2105 (2018). https://doi.org/10.1016/j.jece.2018.01.070

    Article  CAS  Google Scholar 

  24. L. Guz, G. Curutchet, R. M. Torres Sánchez, R. Candal, J. Environ. Chem. Eng. 2, 2344 (2014). https://doi.org/10.1016/j.jece.2014.02.007

  25. S.R. Shirsath, A.P. Patil, B.A. Bhanvase, S.H. Sonawane, J. Environ. Chem. Eng. 3, 1152 (2015). https://doi.org/10.1016/j.jece.2015.04.016

    Article  CAS  Google Scholar 

  26. A. Ghazali, M. Shirani, A. Semnani, V. Zare-Shahabadi, M. Nekoeinia, J. Environ. Chem. Eng. 6, 3942 (2018). https://doi.org/10.1016/j.jece.2018.05.043

    Article  CAS  Google Scholar 

  27. D. Sasmal, S. Banerjee, S. Senapati, T. Tripathy, J. Environ. Chem. Eng. 8, 103741 (2020). https://doi.org/10.1016/j.jece.2020.103741

    Article  CAS  Google Scholar 

  28. F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias, J. Environ. Chem. Eng. 2, 230 (2014). https://doi.org/10.1016/j.jece.2013.12.017

    Article  CAS  Google Scholar 

  29. A.G. Adeniyi, J.O. Ighalo, J. Environ. Chem. Eng. 7, 103100 (2019). https://doi.org/10.1016/j.jece.2019.103100

    Article  CAS  Google Scholar 

  30. S.A. Patil, S.K. Patil, A.S. Sartape, S.C. Bhise, M.M. Vadiyar, M.A. Anuse, S.S. Kolekar, Sep. Sci. Technol. 55, 2904 (2020). https://doi.org/10.1080/01496395.2019.1659366

    Article  CAS  Google Scholar 

  31. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, RSC Adv. 5, 45935 (2015). https://doi.org/10.1039/c5ra07588b

    Article  CAS  Google Scholar 

  32. Y.H. Ho, Scientometrics 59, 171 (2004). https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

    Article  CAS  Google Scholar 

  33. Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  34. S.H. Chien, W.R. Clayton, Soil Sci. Soc. Am. J. 44, 265 (1980). https://doi.org/10.2136/sssaj1980.03615995004400020013x

    Article  CAS  Google Scholar 

  35. I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916). https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  36. H. Freundlich, Z. Phys, Chem. 57, 385 (1906). https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  37. M.J. Temkin, V. Pyzhev, Acta Physico. Chimica. Sinica. 12, 217 (1940)

    Google Scholar 

  38. S.Y. Elovich, O.G. Larionov, Bulletin Acade. Sci. USSR Div. Chem. Sci. 11, 198 (1962). https://doi.org/10.1007/bf00908017

    Article  Google Scholar 

  39. L.M. Cotoruelo, M.D. Marqués, F.J. Díaz, J. Rodríguez-Mirasol, J.J. Rodríguez, T. Cordero, Environ. Prog. Sustain. Energy 31, 386 (2012). https://doi.org/10.1002/ep.10560

    Article  CAS  Google Scholar 

  40. I. Salehi, M. Shirani, A. Semnani, M. Hassani, S. Habibollahi, Arabian J. Sci. Eng. 41, 2611 (2016). https://doi.org/10.1007/s13369-016-2109-3

    Article  CAS  Google Scholar 

  41. S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, J. Hazard. Mater. 136, 800 (2006). https://doi.org/10.1016/j.jhazmat.2006.01.045

    Article  CAS  PubMed  Google Scholar 

  42. S. Chakraborty, S. Chowdhury, P. Das Saha, Carbohydr. Polym. 86, 1533 (2011). https://doi.org/10.1016/j.carbpol.2011.06.058.

  43. K. Mohanty, J.T. Naidu, B.C. Meikap, M.N. Biswas, Ind. Eng. Chem. Res. 45, 5165 (2006). https://doi.org/10.1021/ie060257r

    Article  CAS  Google Scholar 

  44. M.A. Schoonen, J.M.T. Schoonen, J. Colloid Interface Sci. 422, 1 (2014). https://doi.org/10.1016/j.jcis.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  45. A. Pourjavadi, M. Nazari, S.H. Hosseini, RSC Adv. 5, 32263 (2015). https://doi.org/10.1039/c4ra17103a

    Article  CAS  Google Scholar 

  46. A. Awadallah-F, S.A. Al-Muhtaseb, Sep. Sci. Technol. 51, 403 (2016). https://doi.org/10.1080/01496395.2015.1112398

    Article  CAS  Google Scholar 

  47. S.D. Khattri, M.K. Singh, Environ. Prog. Sustain. Energy 31, 435 (2012). https://doi.org/10.1002/ep.10567

    Article  CAS  Google Scholar 

  48. R. Lafi, A. Ben Fradj, A. Hafiane, B. H. Hameed, Korean J. Chem. Eng. 31, 2198 (2014). https://doi.org/10.1007/s11814-014-0171-7

Download references

Acknowledgements

The author SAP is thankful to the Department of Chemistry, School of Science, Sanjay Ghodawat University, Kolhapur and Department of Chemistry, Shivaji University, Kolhapur, MS, India, and also to School of Forensic Science, National Forensic Sciences University, [An Institute of National Importance Under Ministry of Home Affair, Government of India] Goa Campus, Curti, Ponda, Goa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryakant A. Patil.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.A., Kumbhar, P.D., Satvekar, B.S. et al. Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study. J IRAN CHEM SOC 19, 2891–2906 (2022). https://doi.org/10.1007/s13738-022-02500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02500-3

Keywords

Navigation