Skip to main content
Log in

Copper and chromium removal from synthetic textile wastewater using clay minerals and zeolite through the effect of pH

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The textile industries release a substantial amount of effluents into water resources every year. The vast majority of these effluents are composed of heavy metals that bind the textile fibres with dyes. This work proposes to use an adsorption system composed of clay-minerals (kaolinite and montmorillonite) and molecular sieve (zeolite) for separating the Cu2+ and Cr6+ ions, considering the pH changes of aqueous solutions. The adsorbent materials were characterized using the following state of the art techniques such as X-ray fluorescence, X-ray diffraction, Raman spectroscopy and Cation exchange capacity. During the adsorption tests, the contact time of the adsorbates (Cu2+ and Cr6+ ions in concentrations of 100, 50, 10 and 5 mg/L) with the adsorbents vary from 1 to 4 h in acidic and alkaline conditions (pH 3.5 and 7.5). The results indicate maximum adsorption of Cu2+ (at pH 3.5) and Cr6+ (at pH 7.5) ions on application of the zeolitic material. The clay minerals conclusively proved to be less efficient when compared to zeolite. It can be concluded that the adsorption system has achieved the desired efficiency, with substantial removal of Cu2+ and Cr6+ ions for zeolites in synthetic wastewater solutions of the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Hossain, S.K. Sarker, M.S. Khan, Environ. Dev. 26, 23–33 (2018). https://doi.org/10.1016/j.envdev.2018.03.005

    Article  Google Scholar 

  2. Z. Hussain, M. Arslan, M.H. Malik, S. Iqbal, M. Afzal, Sci. Total Environ. 645, 966–973 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.163

    Article  CAS  PubMed  Google Scholar 

  3. E. Hassanzadeh, M. Farhadian, A. Razmjou, N. Askari, Environ. Nanotechnol. Monit. Manage 8, 92–96 (2017). https://doi.org/10.1016/j.enmm.2017.06.001

    Article  Google Scholar 

  4. A. Taavoni-Gilan, E. Taheri-Nassaj, M. Shamsipur, J. Iran. Chem. Soc. 15, 2759–2769 (2018). https://doi.org/10.1007/s13738-018-1463-3

    Article  CAS  Google Scholar 

  5. K. Nadeem, G.T. Guyer, B. Keskinler, N. Dizge, J. Clean Prod. 228, 1437–1445 (2019). https://doi.org/10.1016/j.jclepro.2019.04.205

    Article  CAS  Google Scholar 

  6. M.A. Klunk, A. Oliveira, G. Furtado, G.H. Knornschild, L.F.P. Dick, ECS Trans. 43, 23–27 (2012). https://doi.org/10.1149/1.4704934

    Article  CAS  Google Scholar 

  7. R. Ansari, Z. Mosayebzadeh, Chem. Pap. 65, 1–8 (2011). https://doi.org/10.2478/s11696-010-0083-x

    Article  CAS  Google Scholar 

  8. M. Szynkowska, E. Rybicki, E. Leśniewska, A. Pawlaczyk, T. Paryjczak, E. Matyjas-Zgondek, Chem. Pap. 63, 537–542 (2009). https://doi.org/10.2478/s11696-009-0044-4

    Article  CAS  Google Scholar 

  9. L.D.O. Pereira, R.V. Lelo, G.C.M. Coelho, F. Magalhães, J. Iran. Chem. Soc. 16, 2281–2289 (2019). https://doi.org/10.1007/s13738-019-01694-3

    Article  CAS  Google Scholar 

  10. M.A. Klunk, L.H. Damiani, G. Feller, M.F. Rey, R.V. Conceiçao, M. Abel, L.F. De Ros, Braz. J. Geol. 45, 29–45 (2015). https://doi.org/10.1590/2317-4889201530145

    Article  Google Scholar 

  11. M.A. Klunk, S. Dasgupta, R.V. Conceiçao, J. Palaeogeogr. 7, 12–26 (2018). https://doi.org/10.1186/s42501-018-0009-z

    Article  Google Scholar 

  12. M.A. Klunk, S. Dasgupta, S.B. Schropfer, B.V.G. Nunes, P.R. Wander, Per. Tchê Quím. 16(31), 816–822 (2019)

    Article  CAS  Google Scholar 

  13. P.R. Wander, F.M. Bianchi, N.R. Caetano, M.A. Klunk, M.L.S. Indrusiak, Energy 203, 117882 (2020). https://doi.org/10.1016/j.energy.2020.117882

    Article  CAS  Google Scholar 

  14. R. Cataluña, Z. Shah, V. Venturi, N.R. Caetano, B.P. Da Silva, C.M.N. Azevedo, R. Da Silva, P.A.Z. Suarez, L.P. Oliveira, Fuel 228, 226–233 (2018). https://doi.org/10.1016/j.fuel.2018.04.167

    Article  CAS  Google Scholar 

  15. R. Cataluña, Z. Shah, L. Pelisson, N.R. Caetano, R. Da Silva, C. Azevedo, J. Braz. Chem. Soc. (2017). https://doi.org/10.21577/0103-5053.20170100

    Article  Google Scholar 

  16. A. Fraga, M.A. Klunk, A. Oliveira, G. Furtado, G.H. Knornschild, L.F.P. Dick, Mater. Res. 17, 1637–1643 (2014). https://doi.org/10.1590/1516-1439.305714

    Article  Google Scholar 

  17. T. Madrakian, A. Afkhami, N. Rezvani-jalal, M. Ahmadi, J. Iran. Chem. Soc. 11, 489–498 (2014). https://doi.org/10.1007/s13738-013-0322-5

    Article  CAS  Google Scholar 

  18. Y. Sürme, O. Demirci, Chem. Pap. 68(11), 1491–1497 (2014). https://doi.org/10.2478/s11696-014-0616-9

    Article  CAS  Google Scholar 

  19. M. Šimek, P. Mikulášek, P. Kalenda, T. Weidlich, Chem. Pap. 70(4), 470–476 (2016). https://doi.org/10.1515/chempap-2015-0225

    Article  CAS  Google Scholar 

  20. N. Bahadur, N. Bhargava, J. Water Process. Eng. 32, 100934 (2019). https://doi.org/10.1016/j.jwpe.2019.100934

    Article  Google Scholar 

  21. L. Zhou, K. Xu, X. Cheng, Y. Xu, Q. Jia, J. Clean. Prod. 141, 721–727 (2017). https://doi.org/10.1016/j.jclepro.2016.09.047

    Article  Google Scholar 

  22. A.C. Ruoso, L.C. Bittencourt, L.U. Sudati, M.A. Klunk, N.R. Caetano, Per. Tchê Quím 16(32), 560–571 (2019)

    Article  CAS  Google Scholar 

  23. S.M. Stagnaro, M.C. Volzone, L. Huck, Proc. Mater. Sci. 8, 586–591 (2015). https://doi.org/10.1016/j.mspro.2015.04.112

    Article  CAS  Google Scholar 

  24. S. Rangabhashiyam, N. Anu, N. Selvaraju, J. Environ. Chem. Eng. 1(4), 629–641 (2013). https://doi.org/10.1016/j.jece.2013.07.014

    Article  CAS  Google Scholar 

  25. A.C. Ruoso, A. Lhamby, A.B. Missaggia, M.A. Klunk, N.R. Caetano, Per Tchê Quím. 17(34), 220–239 (2020)

    Article  CAS  Google Scholar 

  26. M.A. Klunk, S. Dasgupta, M. Das, P.R. Wander, Per. Tchê Quím. 16(32), 108–118 (2019)

    Article  CAS  Google Scholar 

  27. M.A. Klunk, S. Dasgupta, M. Das, P.R. Wander, A. Di Capua, Per. Tchê Quím. 16(33), 736–748 (2019)

    Article  CAS  Google Scholar 

  28. A.M. Ferreira, J.A.P. Coutinho, A.M. Fernandes, M.G. Freire, Sep. Purif. Technol. 128, 58–66 (2014). https://doi.org/10.1016/j.seppur.2014.02.036

    Article  CAS  Google Scholar 

  29. R.M. Jain, K.H. Mody, J. Keshri, B. Jha, Mar. Pollut. Bull. 84(1–2), 83–89 (2014). https://doi.org/10.1016/j.marpolbul.2014.05.033

    Article  CAS  PubMed  Google Scholar 

  30. U. Lucia, G. Grisolia, Energy Rep. 5, 62–69 (2019). https://doi.org/10.1016/j.egyr.2018.12.001

    Article  Google Scholar 

  31. U. Lucia, M. Simonetti, G. Chiesa, G. Grisolia, Renew. Sustain. Energ. Rev. 70, 867–874 (2017). https://doi.org/10.1016/j.rser.2016.11.268

    Article  Google Scholar 

  32. S. Islam, G. Bhat, J. Environ. Manage. 251, 109536 (2019). https://doi.org/10.1016/j.jenvman.2019.109536

    Article  PubMed  Google Scholar 

  33. M.A. Klunk, Z. Shah, N.R. Caetano, R.V. Conceição, P.R. Wander, S. Dasgupta, M. Das, Int. J. Environ. Stud. 77(3), 492–509 (2020). https://doi.org/10.1080/00207233.2019.1675295

    Article  CAS  Google Scholar 

  34. S. Kumari, R. Naraian, J. Environ. Manage. 180, 172–179 (2016). https://doi.org/10.1016/j.jenvman.2016.04.060

    Article  CAS  PubMed  Google Scholar 

  35. U. Lucia, G. Grisolia, A.L. Kuzemsky, Entropy 22(8), 887–898 (2020). https://doi.org/10.3390/e22080887

    Article  PubMed Central  Google Scholar 

  36. G. Grisolia, D. Fino, U. Lucia, Energy Rep. 6, 1561–1571 (2020). https://doi.org/10.1016/j.egyr.2020.06.014

    Article  Google Scholar 

  37. N.R. Caetano, R. Cataluña, H.A. Vielmo, Int. Review Mech. Eng. 9(2), 124–128 (2015). https://doi.org/10.15866/ireme.v9i2.4341

    Article  Google Scholar 

  38. N.R. Caetano, D. Soares, R.P. Nunes, F.M. Pereira, P.S. Schneider, H.A. Vielmo, F.T. van der Laan, Open Eng. 5, 213–219 (2015). https://doi.org/10.1515/eng-2015-0016

    Article  CAS  Google Scholar 

  39. N.R. Caetano, G. Lorenzini, A.R. Lhamby, V.M.M. Guillet, M.A. Klunk, L.A.O. Rocha, Int. J. Heat Technol. 38, 1–8 (2020). https://doi.org/10.18280/ijht.380101

    Article  Google Scholar 

  40. N.R. Caetano, T.Z. Stapasolla, F.B. Peng, P.S. Schneider, F.M. Pereira, H.A. Vielmo, Defect Diffus. Forum 362, 29–37 (2015). https://doi.org/10.4028/www.scientific.net/DDF.362.29

    Article  Google Scholar 

  41. N.R. Caetano, M.S. Venturini, F.R. Centeno, C.K. Lemmertz, K.G. Kyprianidis, Therm. Sci. Eng. Prog. 7, 241–247 (2018). https://doi.org/10.1016/j.tsep.2018.06.008

    Article  Google Scholar 

  42. M. Khatamian, M. Irani, J. Iran. Chem. Soc. 6, 187–194 (2009). https://doi.org/10.1007/BF03246519

    Article  CAS  Google Scholar 

  43. M.A. Klunk, S. Dasgupta, M. Das, M.G. Cunha, P.R. Wander, E.C.S.J. Solid, State Sci. Technol. 8(10), N144–N150 (2019). https://doi.org/10.1149/2.0131910jss

    Article  CAS  Google Scholar 

  44. M.A. Klunk, S. Dasgupta, M. Das, P.R. Wander, Z. Shah, Per. Tchê Quím. 16(33), 70–81 (2019)

    Article  CAS  Google Scholar 

  45. M.K. de Souza, M.A. Klunk, S.J.S. Xavier, M. Das, S. Dasgupta, Per. Tchê Quím. 17(35), 816–822 (2020)

    Google Scholar 

  46. F. Ma, Q. Jin, P. Li, Z. Chen, J. Lu, Z. Guo, W. Wu, Appl. Geochem. 84, 325–336 (2017). https://doi.org/10.1016/j.apgeochem.2017.07.002

    Article  CAS  Google Scholar 

  47. M.A. Klunk, Z. Shah, P.R. Wander, Per. Tchê Quím. 16(32), 279–286 (2019)

    Article  CAS  Google Scholar 

  48. M.A. Klunk, M. Das, S. Dasgupta, A.N. Impiombato, N.C. Caetano, P.R. Wander, C.A.M. Moraes, Mater. Res. Express 7, 015023 (2020). https://doi.org/10.1088/2053-1591/ab608d

    Article  CAS  Google Scholar 

  49. M.A. Klunk, S.B. Schröpfer, S. Dasgupta, M. Das, N.R. Caetano, A.N. Impiombato, P.R. Wander, C.A.M. Moraes, Chem. Pap. 74, 2481–2489 (2020). https://doi.org/10.1007/s11696-020-01095-4

    Article  CAS  Google Scholar 

  50. M. Das, S. Dasgupta, M.A. Klunk, S.J.S. Xavier, F. ChemaleJunior, P.R. Wander, Can. J. Chem. 98(10), 609–615 (2020). https://doi.org/10.1139/cjc-2020-0142

    Article  CAS  Google Scholar 

  51. M.A. Klunk, S. Dasgupta, B.V.G. Nunes, P.R. Wander, Per. Tchê Quím. 16(31), 778–783 (2019)

    Article  CAS  Google Scholar 

  52. M. Wdowin, M. Franus, R. Panek, L. Badura, W. Franus, Clean Technol. Environ. 16(6), 1217–1223 (2014). https://doi.org/10.1007/s10098-014-0719-6

    Article  CAS  Google Scholar 

  53. V. Somerset, Talanta 64(1), 109–114 (2004). https://doi.org/10.1016/j.talanta.2003.10.059

    Article  CAS  PubMed  Google Scholar 

  54. K. Elaiopoulos, T. Perraki, E. Grigoropoulou, Microporous Mesoporous Mater. 134(1–3), 29–43 (2010). https://doi.org/10.1016/j.micromeso.2010.05.004

    Article  CAS  Google Scholar 

  55. J.T. Kloprogge, Infrared and Raman Spectroscopies of Clay Minerals (Elsevier, Amsterdam, 2017), pp. 150–199. https://doi.org/10.1016/b978-0-08-100355-8.00006-0

    Book  Google Scholar 

  56. T.G. Ryu, G.J.C. Ryu, C.H. Choi, C.G. Kim, S.J. Yoo, H.S. Yang, Y.H. Kim, J. Ind. Eng. Chem. 12, 401–407 (2006)

    CAS  Google Scholar 

  57. R. Nitzsche, A. Gröngröft, M. Kraume, Sep. Purif. Technol. 209, 491–502 (2019). https://doi.org/10.1016/j.seppur.2018.07.077

    Article  CAS  Google Scholar 

  58. V.K. Singh, E.A. Kumara, Mater. Today Proc. 5(11), 23033–23042 (2018). https://doi.org/10.1016/j.matpr.2018.11.032

    Article  CAS  Google Scholar 

  59. Q. Chen, R. Zhu, H. Fu, L. Ma, J. Zhu, H. He, Y. Deng, Microporous Mesoporous Mater. 260, 76–83 (2018). https://doi.org/10.1016/j.micromeso.2017.10.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian agencies of CNPq (National Council of Technological and Scientific Development – Brasília, DF, Brazil), CAPES (Coordination for the Improvement of Higher Education Personnel) and the Indian agencies such as IRCC (Industrial Research and Consultancy Centre), Indian Institute of Technology Bombay, MoE (Ministry of Education), India for the research funding and research grants of the Brazilian (PNPD/CAPES and DT2/CNPq) and Indian authors, respectively. The authors also acknowledge generous cooperation and assistance of all the people from the company who granted us access to their database and perception.

Funding

This research did not receive financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio Klunk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S., Das, M., Klunk, M.A. et al. Copper and chromium removal from synthetic textile wastewater using clay minerals and zeolite through the effect of pH. J IRAN CHEM SOC 18, 3377–3386 (2021). https://doi.org/10.1007/s13738-021-02273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02273-1

Keywords

Navigation